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Abstract

We review two theorems of Oba [Oba20], concerning the existence of a symplec-
tic Lefschetz-Bott fibration on a complex line bundle over a symplectic manifold
with a Donaldson hypersurface, and the application thereof to the link of the
Ag-type singularity, obtaining distinct strong symplectic fillings of the link. To
this end, we first provide the necessary background on symplectic fillings, Lef-
schetz and Lefschetz-Bott fibrations, and open book decompositions.
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Chapter 0

Introduction

The various notions of symplectic fillings provide a tool to study the topology
of contact manifolds. Generally speaking, a contact manifold (M, ¢) is symplec-
tically fillable if it can be realized as the boundary of a symplectic manifold
(W,w) in such a way that the symplectic form w on W is compatible in a suit-
able sense with the contact structure £ on M, and there are various increasingly
restrictive conditions one may impose on (W, w) to give rise to different flavours
of fillings.

It is known that not every contact manifold is symplectically fillable - indeed,
every symplectically fillable contact structure is necessarily tight [E1i91], which
presents an effective tool to prove tightness of contact structures aside from
holomorphic curve theory introduced by Gromov [Gro85].

Another fruitful tool in the study of the topology of a manifold is presented by
open books, decomposing the manifold of interest into codimension one pages,
revolving around a binding. The first use of open books was in a theorem of
Alexander [Ale23], establishing that any topological 3-manifold admits an open
book description. In the literature, the underlying structure of open books ap-
pears under various names in diverse contexts, such as relative mapping tori,
fibered links, or spinnable structures [Tam72], and Milnor’s Fibration Theorem
treated what would in modern terminology be known as open book decomposi-
tions of spheres [Mil68].

It was in 1973 that Winkelnkemper [Win73] coined the term open book, and
in collaboration with with Thurston, they explained in [TW75] how to endow
any open book of a 3-manifold with a contact structure using Alexander’s the-
orem.

Alexander’s theorem was generalized to closed manifolds of odd dimension
greater or equal to 7 by Winkelnkemper, Tamura [Tam73], and Lawson [Law78]
between 1973 and 1978. Quinn [Qui79] further extended this result to closed



manifolds of dimension at least 5 in 1979, establishing that any odd-dimensional
closed manifold admits an open book decomposition.

Giroux and Mohsen generalized Thurston and Winkelnkemper’s construction
to arbitrary odd dimensions when the pages of the open book are Liouville
domains [GM]. Hence, open books give rise to contact manifolds, and it is
shown in [GM] that, in fact, any contact manifold admits a supporting open
book. In dimension three, Giroux discovered that the correspondence between
open books and contact structures up to isotopy on a given manifold is in fact
unique up to an equivalence relation called positive stabilization [Gir02].

The versatility of open books reveals itself in conjunction with symplectic Lef-
schetz fibrations as a means to obtain Stein fillings of contact manifolds. A
complex analogue of Morse functions introduced by Donaldson [Don99] in the
context of symplectic geometry, restricting a symplectic Lefschetz fibration
m : (E,Q) — D over the unit disk D C C to the boundary OF induces a
contact open book description of OF, producing a contact manifold.

By Eliashberg’s characterization of Stein domains [E1i91], the total space E can
be seen to be a Stein filling of this contact manifold, which makes it possible in
certain cases to read off fillability of a contact manifold directly from a contact
open book description. In fact, a converse was given by Giroux and Pardon
[GP17], establishing that any Stein domain can be presented as the total space
of a symplectic Lefschetz fibration over the disk.

The technique of filling by Lefschetz fibrations has been applied by sza@m and
Stipsicz to construct 3-manifolds with infinitely many Stein fillings [0S04a], and
Oba has generalized this result to higher dimensions [Obal8].

By allowing the critical locus of the fibration 7 to be a submanifold rather
than a discrete set of points, we generalize Lefschetz fibrations to the notion
of Lefschetz-Bott fibrations. Formally studied by Perutz in the construction of
Lagrangian matching invariants [Per07], restricting a symplectic Lefschetz-Bott
fibration to its boundary again produces a contact manifold for which its total
space serves as a strong symplectic filling [Oba20], [LHW18]. Notably, fillings
induced by symplectic Lefschetz-Bott fibrations need not be Stein in general
(see Remark 4.7.4).

The main purpose of this text is to examine how Oba in [Oba20] has established
the existence of symplectic Lefschetz-Bott fibrations on line bundles over a class
of symplectic manifolds, and how they can be applied to obtain distinct strong
symplectic fillings of the link of the Ag-type singularity.

To this end, we organize this thesis as follows. Chapter 1 to Chapter 3 serve as
preparation for the main applications: in Chapter 1, we review the fundamentals
of symplectic and contact geometry before introducing the terminology of sym-
plectic fillings. Chapter 2 consists of a discussion of Lefschetz and Lefschetz-Bott
fibrations, and Chapter 3 reviews the theory of open books before exploring how
to obtain a filling of a contact manifold through Lefschetz and Lefschetz-Bott



fibrations.

Having established the necessary background, Chapter 4 is concerned with the
proof of [Oba20, Theorem 1.1], which guarantees the existence of a symplectic
Lefschetz-Bott fibration on a complex line bundle over a polarized symplectic
manifold. In Chapter 5, we explain how to obtain distinct symplectic fillings of
the link of the Ag-type singularity using symplectic Lefschetz-Bott fibrations,
which amounts to the proof of [Oba20, Theorem 1.2].

We conclude in Chapter 6 by indicating leads as to how one might be able to
prove similar filling results for other contact manifolds, and by exploring what
objects involved in the construction of the Lefschetz-Bott fibration from [Oba20,
Theorem 1.1] would need to be better understood in order to make them more
explicit in a simple case.
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Chapter 1
Symplectic Fillings

The setting throughout this thesis is that of symplectic geometry, so we start
this chapter by recalling the relevant definitions. Following up in Section 1.1.2,
we will introduce some notions of contact geometry, which can be considered
as the geometry occuring on hypersurfaces contained in a neighbourhood where
the symplectic form is exact.

Having set the stage, we will introduce symplectic fillings of contact manifolds,
one of the main points of interest in this thesis.

1.1 Setting the Stage

1.1.1 Symplectic Geometry

Definition 1.1.1. A symplectic manifold is a pair (W,w) where W is a
manifold equipped with a 2-form w € Q2(W) that is

e closed, i.e. , dw = 0, where d denotes the exterior derivative;

e nondegenerate, by which we mean that for any point z € W and any
nonzero tangent vector u € T, W, the map

W —T;W
U= wy(u,v)
is an isomorphism.
A symplectic manifold (W, w) is called exact if w is exact.

Remark 1.1.2. The nondegeneracy condition on the symplectic form w is
equivalent to w™, the top exterior power of w, being a volume form. This
implies that the dimension of W is even, since the top power of w will always
have even degree as w is a 2-form.



Moreover, there are three distinguished classes of submanifolds of symplectic
manifolds we may occasionally reference.

Definition 1.1.3. Let (W, w) be a symplectic manifold and L C W an embed-
ded submanifold. For any point x € L, denote by

(T, L) ={veT,M|w,(v,w) =0Vw e T, L}
the symplectic complement of T, .. The submanifold L is called
e isotropic, if (T,L) C (T,L)* for all x € L;
e coisotropic, if (T,,L)¥ C T,.L for all z € L;
e Lagrangian, if T, L = (T, L)* for all z € L.

Remark 1.1.4. Note that L being isotropic is equivalent to the symplectic
form w vanishing when restricted to T'L. Moreover, if dim W = 2n, it is easy
to prove that the dimension of an isotropic submanifold is at most n, whereas
coisotropic submanifolds are of dimension at most n. Consequently, Lagrangian
submanifolds have dimension n.

Some prototypical examples of symplectic manifolds which will appear through-
out the rest of this thesis are the following:

Examples 1.1.5.

1. Let W = R?” with linear coordinates xi,...,Zn, Y1,-..,Yn. Then the
standard symplectic structure on R?" is

n
W = dez A dyz
i=1
One may easily check that wy is closed and nondegenerate.

~

2. Let W = C™ with complex linear coordinates z1,...,z,. Identify C" =
R?" via z; = zj + iy;, and define the 1-forms dz; = dz; + idy; and
dz; =dzr; —idy;, for j =1,...,n.

The standard symplectic form on C" is
Z. n
wo = 5 zjldz] N dfj.
j=

Note that this is precisely the standard symplectic form on R?" under the
identification z; = x; + 1y;.

3. Complex projective space CP™ carries a symplectic structure, which can
be characterized as follows.

Let p : S?"*1 — CP" be the Hopf fibration and i : §?"+1 — Cn*! the
inclusion. Then the Fubini-Study form wpg € Q2(CP") is the unique
symplectic form satisfying i*wy = p*wrs.



Recall that the standard atlas is made up of charts of the form (p;,U;),
where U; = {[20: ... : 2] € CP™ | z; # 0}, and

1
(pj([ZO [ Zn]) = Z(Zl,...,Zj,thJrl,...,Zn).
J

It can be shown that the map

C"—=R
z > log(|z|> + 1)

is i-convex, so that the 2-form @pg := —dd® log(|z|?> + 1) defines a sym-
plectic form on C™. The transition functions of the above atlas for CP™
preserve wrg, so that one may pull wpg back by the maps ¢; to obtain a
well-defined symplectic form on CP". This symplectic form turns out to
coincide with wgg. See Section 1.4.1 for definitions relating to i-convexity,
and [Can06, Chapter 16] for more details on the Fubini-Study form wgs.

The notion of equivalence for symplectic manifolds is that of symplectomor-
phisms.

Definition 1.1.6. A symplectomorphism ¢ between two symplectic man-
ifolds (W1, w1) and (Wa,ws) is a diffeomorphism ¢ : W; — Wy such that
Wy = wi.

One of the first statements one typically encounters in the study of symplectic
geometry is that symplectic manifolds “have no local invariants”: locally, ev-

ery symplectic manifold looks like R2” with the symplectic structure wg from
Examples 1.1.5. The formal statement is given by Darboux’ theorem.

Theorem 1.1.7 (Darboux). Let (W?",w) be a symplectic manifold of dimen-
sion 2n. Then for every point x € W, there exists a neighbourhood U C W of
x, a neighbourhood V of 0 € R*", and a chart ¢ : U — V so that o(x) = 0, and

(e )'w=w = Zdwi A dy;
i=1

is the standard symplectic structure on V C R?",

For a proof, see [Can06, Theorem 8.7].

1.1.2 Contact Geometry

A contact structure on an odd-dimensional manifold M is a codimension one
distribution, subject to a non-integrability condition. Often referred to as the
odd-dimensional cousin of symplectic geometry, the two fields are closely linked
and exhibit some similarities. The exposition of contact geometry in this thesis
follows that of Geiges [Gei0g].



To describe codimension one distributions, it is useful to consider them as the
kernel of 1-forms. This is always possible locally, and often enough, there is a
global 1-form « defining &:

Lemma 1.1.8 ([Gei08, Lemma 1.1.1]). Let & be a codimension one distribution
on a manifold M. Then & can locally be written as the kernel of a 1-form «. It is
possible to write £ = ker « for a global 1-form « if and only if £ is coorientable,
which is to say that the quotient line bundle TM /¢ is trivial.

For the rest of this thesis, we shall assume all our hyperplane fields to be coori-
entable unless otherwise specified.

Recall that a distribution can be integrated to a foliation if the set of vector
fields belonging to ¢ form a subalgebra of the Lie algebra of vector fields under
the Lie bracket. One can show that, in terms of the defining 1-form «, this is
equivalent to

aANda=0.

This particular result follows from [Tam?76, The Frobenius Theorem 7.10]. The
maximal non-integrability criterion which makes a hyperplane distribution into
a contact structure reads as follows:

Definition 1.1.9. Let M be a manifold of dimension 2n + 1. A contact
structure £ on M is a codimension one distribution & = ker o such that

a A (da)™ #0.

The 1-form « is called a contact form, and the pair (M, €) is then called a
contact manifold.

Remark 1.1.10. As a A (do)™ is a volume form, contact manifolds are in
particular orientable. Given an orientation of M, a contact form « is called
positive if the orientation induced by oA (da)™ agrees with the one prescribed,
and negative otherwise.

Remark 1.1.11. An equivalent characterisation of the contact condition for a
1-form « is that da is symplectic on &.

To see this, let a be a contact form and choose any vectors ug,...,us, SO
that
a A (da)™(ug, - .., ugp) # 0.

As M is (2n 4 1)-dimensional and ker « is 2n-dimensional, precisely one of the
vectors must not lie in ker & = €. Without loss of generality, let this vector be
up. This implies (da)™(uy,...,us,) # 0, so (da)™ is a volume form on &.

If do is nondegenerate on £, we may choose u1,...,us, € £ so that

(da)™(uy,...,up,) # 0.



Again by dimensional reasons, there must exist a vector ug € & so that (ug, u1, ..., Up)
is linearly independent, and also

a A (da)™ (ug,u1, ..., uz,) # 0.

To a contact form, we associate a unique vector field as follows:

Definition 1.1.12 ([Gei08, Lemma 1.1.9]). Let a be a contact form defining a
contact structure & = ker a. Then there exists a unique vector field R,,, called
the Reeb vector field of «a, satisfying

e 1 da=0
e a(R,) = 1.

Note that while R,, is unique, there is no well-defined Reeb vector field associated
to a contact structure, as there are many 1-forms having £ as their kernel.

The following examples of contact structures will occasionally appear through-
out this text:

Example 1.1.13.

1. The standard contact structure & on R2"*+! with coordinates

(x17y17"‘>xn7yn72)

is defined as the kernel of the 1-form
n
ag = dz + Z%d%
i=1
This is indeed a contact form as dag = ., dz; A dy; is the standard
symplectic form on R?".

2. As we will soon see in Definition 1.2.2, one way to obtain contact forms is
through so-called Liouwville vector fields on symplectic manifolds (W,w).
These are vector fields expanding the symplectic form in the sense that

Lyw=w.

It turns out that if V' is a Liouville vector field transverse to some hyper-
surface ¥ € W, then 1y w restricted to X is a contact form.

We use this notion to define the standard contact structure &y, on S27H1,
Consider R?"*2 with its standard symplectic form wy = Y, dz; Ady;. The
(slightly scaled) radial vector field

10



is Liouville for wgy: we have

n+1 n+1
1
Ao == tvwo = 5 > (dwi(V)dy; — dy; (V)da;) = 3 > (widy; — yida;).

i=1 i=1
Ao can easily be checked to be a primitive of wyg, so that Ly wy = wy.

Evidently, V is outward pointing on S?"*!, so that \g is a contact form
on S?"*1. Fix .., = ker \g as the standard contact structure on S2"+1!,

Equivalence among contact manifolds is described by contactomorphisms.

Definition 1.1.14. A contactomorphism between contact manifolds (M, &2)
and (M, &) is a diffeomorphism ¢ : M; — My such that Dy[&;] = &.

Remark 1.1.15. The condition for ¢ to be a contactomorphism in terms of
contact forms is that ¢*a; and «g have the same kernels, which is the case if
and only if p*a; = fag for some nowhere zero function f.

It is at this point that a first similarity to symplectic geometry arises in that
both geometries have no local invariants.

Theorem 1.1.16 (Pfaff). Let o be a contact form on the manifold M>*"+1
and x € M be a point. Then there exists a neighbourhood U € M of xz, a
neighbourhood V of 0 € R+ and a chart ¢ : U — V so that o(x) = 0, and

(e N'a=ao=dz+ szdyz
i=1
See for example [Gei08, Theorem 2.5.1] for a proof.

Let us examine the Reeb vector field of Ag. Because general dimension (2n + 1)
only increases notational complexity, in what follows we will consider the case

of 3.
Example 1.1.17. The Reeb vector field R, for the contact form

1
Ao =5 (z1dyy — yrdey + zadys — yads)

R =92 2 O 9 0
Ao layl ylaxl 23y2 y23$2 .

Moreover, the orbits of its flow define the fibers of the Hopf fibration

on S3 is

C%?> 8% 82 =CP!,

(21,22) ¥ [21 : 22].

Proof. This proof is as in [Gei08, Lemma 1.4.9].

11



We will denote the proposed candidate for Ry, by Z and show that Z = R),.
Then
1izdo = 2]+ +as+ys =1,

and as d\g = wqp, we see that

1zWoy = 2(—y1dy1 — Ildxl — deyQ - ZZ?QdZZ?Q)
= —2rdr.

However, on the tangent bundle of S3, dr = 0 since r = 1. This proves Z = R, .
The fibers of the Hopf fibration containing the point
(21,22) = (w1, +iy1, T2 + iya) € S* C C?
can be parametrised by
v(t) = (e, e"2), te€]0,27).

We claim this is an integral curve of Ry,. Evidently §(t) = (ie®2,ie' 25), which
in real coordinates is

(21 cos(t) — Sin(t))i — (y1 cos(t) + x1 sin(t))

ayl 37331

t) — in(t))— — t in(t))—.

+ (2 cos(t) — ya sin( ))8y2 (y2 cos(t) + x4 sin( ))8332
This is easily checked to be 3R, (7(t)), which yields the claim. Note that in
particular, the orbits of R, are closed. O

1.2 Symplectic Collar Neighbourhoods

As remarked before, contact geometry naturally arises on the boundary of sym-
plectic manifolds, under the assumption that there exists a transverse Liouville
vector field near the boundary. The goal of this subsection is to show that a
neighbourhood of the boundary of such symplectic manifolds can be symplec-
tized, and this neighbourhood will be referred to as a symplectic collar. Sym-
plectic collar neighbourhoods will be ubiquitous in local computations in the
chapters to follow.

Definition 1.2.1. Given a contact manifold (M™, ¢ = ker «), the symplecti-
zation of (M, ¢) is the symplectic manifold

(R x M,d(e'a)),
where we identify « with its pullback under the projection R x M — M.
This is indeed a symplectic form:

(d(e'a))" = (e'(dt A + da))™ = ne™dt Ao A (da)" "t # 0.

The assumption mentioned above was the existence of a Liouville vector field:

12



Definition 1.2.2. Let (IW?" w) be a symplectic manifold. A vector field V' on
W is called Liouville if
Lyw=w.

Remark 1.2.3. One should note the following consequences of this definition.

1. Wherever V is defined, w is exact: we have w = Lyw = diyw, so that
w = d\, where A\ := 1y w.

2. Conversely, if w is exact, then any primitive A induces a Liouville vector
field defined by A = 2y w, which exists by nondegeneracy of w.

3. If ¥ C W is any orientable hypersurface transverse to V, then A7y is a
contact form on X: as V is transverse to X, 1y (w™) is a volume form on
3, so that

0 # 1y (W") = nryw Aw™ !t =nA A (dN)

Note that in the case ¥ = OW, the contact structure induced by A|raw is
positive or negative depending on whether V' is inward or outward point-
ing, respectively.

Remark 1.2.4. A hypersurface which has a neighbourhood in which a Liouville
vector field is defined is thus often referred to as a hypersurface of contact type.
We will primarily consider > = 0W.

Relating this to the symplectization of a contact manifold, we have the follow-
ing:

Proposition 1.2.5. The vector field % is a Liouville vector field on the sym-
plectization of the contact manifold (M, = ker ).

Proof. We need to show £ 2 d(e a)=d 2 d(e a) = d(e a). Therefore, it suffices
to show that 10 d(eta) = e a+ B for some closed 1-form 3 € QY(R x M). Take
any Y € X(R x M) and compute

z%d(etoz)(Y) =e'(dt N a+da) <§t,Y>

oo (£)

Recall that we are writing « for pr*« by abuse of notation, where pr: R x M —
M 1is the projection. We shall write this explicitly to show that da (at,Y)

vanishes. Write Y = fat +g 8;c for some smooth functions f, g* € C*°(R x M)

13



and local coordinates x; on M and compute

dpr* o (gt ) (pr a( )) (pr « (i)) —pria <|:38t’yj|i)

b 0)) (G o

BN
0

®) 8g 39 N 0
ot ox; ot ox;

=0.

Here, we used in (1) that Dpr [2] = 0 and the identity [W,hZ] = W(h) +
h[W, Z] for any two vector fields W, Z and any smooth function h, as well as
antisymmetry of the Lie bracket; in (2 ), again the fact that Dpr [2] = 0 and

{%, 8%1;} = 0; and in (3) the fact that 2 5 (a (%)) =0. ]

In the construction of symplectic collar neighbourhoods, we will make use of
the following property of the flow of Liouville vector fields:

Lemma 1.2.6. Suppose V is a Liouville vector field on (W?",w). Then its flow

@y satisfies pjw = elw.

Proof. Since V is Liouville, we have for any ¢ € R that

%%w = ¢ Lyw
= Qiw
Suppose z1,..., T2, are local coordlnates on W. The above equation evaluated

at the coordlnate vector fields a— and this becomes

83:’

dt% Wij = @twwa

which is a differential equation for ordinary functions together with the initial
condition ¢jw;; = w;;. Thus the solution is

* t
PrWij = € Wyj.
t

Since this holds for any component of w, we obtain ¢fw = e'w. O

We now have all the ingredients necessary to construct our symplectic collar
neighbourhoods.

14
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Construction 1.2.7. Let (W, w) be a symplectic manifold and V' be a Liouville
vector field defined in a neighbourhood of W which is outward pointing along
OW. Set A := 1yw. Then for some small ¢ > 0, there is a symplectic collar
neighbourhood embedding

c: (OW x (—&,0],d(e'\)) = (W,w).

Proof. To construct collar neighbourhoods for the boundary of any manifold W,
one only needs to show the existence of a vector field transverse to the boundary
OW, whereafter the collar is constructed using the flow of this vector field. Thus
the fact that V' is outward pointing yields a collar defined by

c:OW x (—¢,0] = W, c(p,t) = pu(p), c(p,0) =p Vpec oW,

where ¢, is the flow of V. Hence as w = diyw, it remains to show that ¢ pulls
back A to e!A|sw . In order to do this, consider a point (p, tg) € OW x (—¢, 0] and
a tangent vector U at (p, tp), which can be represented by the tangent vector at
t =0 of a curve

(n(t), to + tu)
for n a suitable curve in OW and u € R. We want to compute
ww(p, i) (U) = tvwy, () (De(pst0)[U]) -
We first look at the derivative:

D )01/ (0)1)) = 5| o(a(e). o+ 1
= G| et gl o)

0
= uV(¢(p,to)) + Dy, (p)[u].

Thus we see that

Wy, (p) (DD, 10) [U]) = wwwo, (p) (Dt (P)[u]) = @i, (ww)(u).
In general for a diffeomorphism ¢, we have
Prvw =1 v W,
where p*V (y) = Do~ (0(y))[V(¢(y))]- Hence we compute
PV (2) = Doy H(pe(2)) 1 (2)]

_d
dt’
d

m Pt (z)

dt' o

= V(go(x))
=V(z).

o7 (prrv (2))
t’'=0

15



Thus ¢;V =V, and by Lemma 1.2.6, we have ¢fw = e'w, so that
gofo (yw) = ePryw.

Restricting to OW proves the claim. O

With minor modifications to this construction, one can construct symplectic
cylindrical neighbourhoods of hypersurfaces ¥ C W near which there exists a
transverse Liouville vector field.

1.3 Flavours of Symplectic Fillings

Having seen how symplectic manifolds with Liouville vector fields near their
boundary give rise to contact manifolds, we are interested in the converse;
namely, given a contact manifold, is there a symplectic manifold whose boundary
is the given contact manifold, and moreover in such a way that the symplectic
structure induces the contact structure?

We begin slightly more generally by discussing symplectic cobordisms.

Definition 1.3.1. Let (M_,¢_) and (M;,&4) be compact oriented contact
manifolds so that the contact structures {4 are positive. Then, a cobordism W
between M_ and M, is called

e a weak symplectic cobordism if W admits a symplectic form w so that
wle. < 0and wlg, > 0;

e 3 strong symplectic cobordism if there exists a Liouville vector field
V € X(W) for a symplectic form w on a neighbourhood of OW = dM_ U
M which is inward pointing on M_, and outward pointing on M, so
that the induced contact structure on M1 by V agrees with &4 ;

e an exact symplectic cobordism, or a Liouville cobordism, if it is a
strong symplectic cobordism for which V' is globally defined;

e a Stein cobordism if W admits the structure of a Stein domain; that
is, a complex structure J and a J-convex Morse function ¢ : W — C
(see Definition 1.4.6) that has M_ and M, as regular level sets. The
Stein structure should be such that the contact structures induced on the
boundary agrees with £4.. See Section 1.4.2; also for Weinstein cobordisms.

e a Weinstein cobordism if W admits a Weinstein structure: an exact
symplectic form w, together with a Liouville vector field which is gradient
like for an exhausting Morse function ¢. The function ¢ should have M.
as regular level sets, and the induced contact structure on My should
agree with &4.

We then call M_ the concave boundary, and M, the convex boundary of W.
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Remark 1.3.2. The notion of weak symplectic cobordism as stated in this
definition is limited to contact manifolds My of dimension 3, as only then, the
contact hyperplanes £ are 2-dimensional so that w can be evaluated on them.
It is not immediately obvious how to extend this notion to higher dimensions,
though Massot, Niederkriiger, and Wendl have proposed in [MN'W13] the notion
of weak convexity.

Note that the notions of cobordisms above are increasingly restrictive. Strong
symplectic fillings satisfy the orientation requirements of weak symplectic fillings
by Remark 1.2.3. Stein cobordisms turn out to have a symplectic form —dd®¢
compatible with J, so that the gradient of ¢ with respect to the induced metric
is Liouville, and thus they are also Liouville cobordisms. Stein and Weinstein
cobordisms are in fact equivalent notions as evidenced by deep theorems by
Cieliebak and Eliashberg [CE10]. Some results along this line are discussed in
Section 1.4.3.

The primary fillings of interest in this thesis will be Stein and strong symplec-
tic fillings. Strong symplectic cobordisms are well-behaved in that they are
transitive, by which we mean the following:

Proposition 1.3.3 ([Gei08, Proposition 5.2.5]). Suppose we are given contact
manifolds (M_,£_), (M,€) and (My,£+) in such a way that there are strong
symplectic cobordisms (W_,w_) and (W4,w4) from M_ to M from M to M,
respectively.

Then gluing W_ to W, along M gives a strong symplectic cobordism from
(M_,€_) to (My,€,).

Proof. Let ji : M — W be inclusions, Vi be corresponding Liouville vector
fields near M, and define corresponding contact forms
ot = ji (e, wa).

Since a— and a both induce the same contact structure £ on M, one has to be
a multiple of the other by a nonvanishing function, so we can find f € C*(M)
such that

ay =ela_. (1.1)

As M is compact, f attains its extrema, and thus scaling w, (and thereby «)
with a large positive constant, we may assume that e/ > 1, or, equivalently,
that f > 0.

Now take two symplectic collar neighbourhoods of M in (W4, w4 ) and (W_,w_):
((=2,0] M), d(e‘a_)) = W,

and
([0,€) x M), d(eH a_)) — W,.
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Note that d(e**/a_) = d(efay) by Equation (1.1). Set
Wo = {(t,z) R x M|0<t< f(z)}

and endow it with the symplectic form d(e’a_). We can thus consider it as a
submanifold of W_. Identifying

W_ 3 (0,z) ~ (0,z) € Wy

and
Wo 3 (f(z),z) ~ (0,z) € Wy

produces a symplectic manifold
Ww_ Unm WO Ups W+

that serves as a cobordism, as desired. It is compact as we may view it as the
image of W_ U W, LU Wy under the (continuous) quotient projection.

Let us now verify that the glued manifold inherits a global symplectic form. As
the collar embeddings are symplectic, we may check well-definedness directly
on the collar neighbourhoods. To check that the symplectic form is well-defined
under the identifications made between Wy and W, it suffices to check that

d(e'ay) (0,0 = d(e' o) (fa)w), V@ € M.
This, however, is true since

d(et oy )00y = d(eTa ) = d(efas), = d(e'a) (f(a)2)-

The case is clear for identifications made between Wy and W_ since there are
no nontrivial identifications and the symplectic form is the same. O

The setting in the rest of this thesis will not be that of symplectic cobordisms,
rather that of symplectic fillings.

Definition 1.3.4. A (weak/ strong/ exact/ Stein/ Weinstein) cobordism from
the empty set to a contact manifold (M, §) is called a (weak/ strong/ exact/
Stein/ Weinstein) symplectic filling.

Example 1.3.5. Consider the unit ball
B2 = {(x,y) € R x R™ | x| + [|y||* < 1},

together with the restriction of the standard symplectic form

2n+2
wo = Z dx; N dy;.
=1

We have seen that
n+1 a

1 0
Vix,y) = 5 ;%6701 +yi87yi
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is a Liouville vector field for wy, and it is evidently outward pointing on S?*+1 =
OB?"*t2. The kernel of the associated primitive was defined as the standard
contact structure on S?"T! so (B?"*2 w) is an exact symplectic filling of
(SQWJrl7 fcan)-

1.4 Stein and Weinstein Manifolds

Here, we would like to formally define the aforementioned notions of Stein and
Weinstein fillability for contact manifolds and discuss their complex and sym-
plectic aspects. To this end, we follow [CE10], and begin by recalling some
definitions from complex geometry.

1.4.1 J-Convexity

Definition 1.4.1. Let (W,J) be an almost complex manifold. The almost
complex structure J is called tame with respect to a symplectic form w € Q?(W)
on W if

w(v,Jv) >0

for all nonzero tangent vectors v € TW.

If, in addition, w is J-invariant in the sense that
w(Ju, Jv) = w(u,v)

for all u,v € TW, then we say that w and J are compatible.

Remark 1.4.2. Recall that for w € Q2(W) a symplectic form compatible with
the almost complex structure J on W, one obtains a Riemannian metric on W
by setting

g(u,v) = w(u, Jv).

Definition 1.4.3. An almost complex structure J is called integrable if there
exists an atlas of J-holomorphic charts on W", that is, charts to C"™ whose
transition functions are holomorphic.

A Stein manifold will be a manifold that is equipped with a J-convez function.
This section collects the relevant definitions.

Definition 1.4.4. Let (W, J) be an almost complex manifold and ¢ € C*°(W)
be a smooth function. We associate to ¢ the 2-form

Wy = —dd®¢.
The operator d® is defined by
CH(X) = d6(JX)

for X € X(W).
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Two natural questions present themselves at this point.
1. When is wy symplectic?
2. When is g4 = wy(-, J-) a metric?

Starting with the second question, it turns out that in general, g4 need not even
be a symmetric tensor. It evidently is symmetric, however, if wy is J-invariant.
A sufficient condition for J-invariance is integrability.

Lemma 1.4.5. If (W?" J) is a complex manifold (i.e. J is integrable), then

we 48 J-invariant.

Proof. On any complex manifold with complex coordinates zx = x + iy, define
the 1-forms
dzj, = dxy + idyy, dzg = o — idyg.

Then any 1-form can be written as a C°°(W)-linear combination of these forms.

Further define the complex valued (1, 1)-form

90 : zn: 502y niz
= o — j k-
k=1 8zj8zk !

Note that
dzj o1 = idzj, dz; o1 = —idz;,

and use this to compute

"/ 0 .0 . /.0 .0
d°¢ = g (%<¢>dzj it 5= (95 o ) =y (zazjw)dzj - ad> :

=0
and thus
—dd®¢ = 2i f: P Nz = 2i00¢
=0 82’]' 8Zk k 7 '
Since 00¢ is i-invariant, so is we. O

Addressing the first question, J-convexity is the concept that handles nonde-
generacy of wg.

Definition 1.4.6. A function ¢ : W — R on an almost complex manifold
(W, J) is called J-convex if wy tames J, that is, if

wg(v, Jv) >0

for all nonzero tangent vectors v.

The function ¢ is called exhausting if it is proper and bounded from below.
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A J-convex function ¢ on an almost complex manifold thus gives rise to a sym-
plectic form wg, and moreover , if J is integrable, to a Riemannian metric g4. We
also obtain that the gradient of ¢ with respect to this metric is Liouville:

Lemma 1.4.7. Let ¢ be a J-convex function on a complex manifold (W, J) and
set
we = —dd¢, Ny 1= —d¢, Vj:=grad,.

Then wg = dAy is a symplectic form with Liouville vector field V.

Proof. Recall that wg is symplectic by definition of J-convexity and the as-
sumption that J is integrable. By definition of the gradient, we have for any
Y ex(W)

quS(Y) =do(JY) = g¢(grad¢, JY) = 7w¢(grad¢,Y) = —y,wy(Y).

Thus /\45 = ZV¢W¢, and £V¢w¢ = d/\¢ = We- ]

1.4.2 Liouville, Stein, and Weinstein

In this section, we will talk about Stein and Weinstein manifolds. Before we do
so, we define Liouville manifolds. The notion of Liouville domains in particular
is relevant later on, as their boundary is always of contact type and they always
admit symplectic collars.

Definition 1.4.8. A Liouville manifold (W,w = d\, V) is an exact symplectic
manifold (W, w) together with a Liouville vector field V' defined by A = 2y w such
that

e the Liouville vector field V is complete;

e W is convex in the sense that there exists an exhaustion of W by com-
pact subsets W* C W with smooth boundaries along which V' is outward
pointing, so that W' ¢ W2 C W3 C ... and W = J,o, W*.

We will often suppress the Liouville vector field from the notation and denote
Liouville manifolds simply by (W, d\).

Remark 1.4.9. If W is compact, then the second item implies that W = W*
for some large k, and thus the Liouville vector field is outward pointing along
ow.

We are now ready to formally define the cobordisms from Definition 1.3.1.

Definition 1.4.10. A Liouville cobordism (W,w,V) from M_ to M, is a
compact exact symplectic manifold (W, w = d\) with boundary OW = M_UM,
and a globally defined Liouville vector field V' which points transversely inward
on M_ and outward on M.

A Liouville cobordism with M_ = ) is called a Liouville domain.
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Remark 1.4.11. A Liouville domain can be considered as a compact Liou-
ville manifold. Note also that Liouville domains always admit symplectic collar
neighbourhoods as the symplectic form is globally exact and V' is outward point-
ing.

Definition 1.4.12. A Stein manifold (W, J, ¢) is a complex manifold (W, J)
together with an exhausting J-convex Morse function ¢. A Stein cobordism
(W, J, ¢) from M_ to M, is a Stein manifold with OW = M_ LU M, such that
M are regular level sets of ¢. A Stein cobordism with M_ = 0 is called a
Stein domain.

If the manifold W is fixed, we refer to a tuple (J, ) making (W, J, ¢) into a
Stein manifold as a Stein structure on W.

Remark 1.4.13. Stein manifolds are Liouville manifolds: the form wy is sym-
plectic as ¢ is J-convex, and as J is integrable, the induced metric g4 is indeed
a metric (see the discussion after Definition 1.4.4). The gradient vector field
Vi 1= grad with respect to g4 is Liouville by Lemma 1.4.7.

As for the convexity condition, the suggestively termed property of ¢ being
exhausting implies that the sets W* = ¢~!([—~o0, d]) for di — oo an increasing
sequence of regular values provide a compact exhaustion of W. The vector field
Vy is transverse to the level sets of ¢, which are the boundaries of the Wk, and
indeed outward pointing as dj is an increasing sequence.

Definition 1.4.14. A Weinstein manifold (W,w = d\,V, ¢) consists of an
exact symplectic manifold (W, w = d\) with a complete Liouville vector field V/
which is gradient-like for an exhausting Morse function ¢ : W — R.

A Weinstein cobordism (W, w,V, ¢) from M_ to M, is a Liouville cobordism
(W,w, V) such that V is gradient-like for the Morse function ¢ : W — R which
is constant on the boundary. A Weinstein cobordism with M_ = ( is called a
Weinstein domain.

A triple (w, V, ¢) making (W, w,V, ¢) into a Weinstein manifold is called a We-
instein structure on W.

Remark 1.4.15. The gradient-like vector field V in a Weinstein manifold
(W,w = d\,V, ), or the gradient V,, in a Stein manifold (W, J, ¢), is always
transverse to the level sets of ¢. Thus the primitive A of w (or Ay of wy, respec-
tively) restricted to any level set induces a contact structure. In particular, the
boundary of Stein and Weinstein domains carries a contact structure induced
by the Stein or Weinstein structure.

Definition 1.4.16. A Liouville/ Stein/ Weinstein filling (W,w) of a con-
tact manifold (M, ¢) is a Liouville/ Stein/ Weinstein domain with OW = M so
that the induced contact structure agrees with &.

It is immediate that Weinstein manifolds are Liouville manifolds from the prop-
erties of V. Let us give some examples of Weinstein manifolds as found in
[CE10, Example 11.12].
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Example 1.4.17.

1. The canonical Weinstein structure on C” is defined by

n

" 1 ) d IS, 5 o
wo = dek/\dyk, Vo= 5 Z <Ikaxk +ykayk) , $o = 1 l;(ka+yk)

k=1 k=1

The corresponding primitive of wy is Ag = % > re i (zrdyr — yrdxy). Note
that the function ¢ is Morse of index 0, and is bounded from below by 0.
Preimages of closed intervals are closed balls in C™, so ¢q is proper and
thus exhausting. The vector field Vj is precisely grad .

2. The cotangent bundle T*@Q of a closed manifold Q™ carries a Weinstein
structure. Suppose ¢ = (q1,- - -, ¢n) are local coordinates on ), and denote
by (q,p) the induced coordinates on T*@Q. Then the following data define
a Weinstein structure:

0

Wecan = d>\can7 Vo= paia
p

1
bo = §|P\2'
Here, A\¢an = pdq denotes the canonical Liouville form on T*@Q. The vector
field Vj is easily verified to be Liouville, and moreover, it is precisely the
gradient of ¢g: note that the Christoffel symbols of the metric dp ® dp on
T*(@ vanish, and thus
9]

9 o ]
=2 =), Pj5—) = 2pi-
op; PI" = 20(V 2. (5 ; ): P ;) =

Hence grad, = pa% =Vp.

Note, however, that ¢g is not Morse, but rather Morse-Bott. One could
in fact relax the definition to allow for Morse-Bott functions, but we will
slightly perturb ¢g in order to obtain a Weinstein structure in the sense
of Definition 1.4.14. To this end, consider any Riemannian metric on @
and a Morse function f : Q — R. The Hamiltonian vector field X of
F(q,p) := p(grad;(q)) coincides with grad; along the zero section of TQ:
in coordinates,

2

0 0°f
(f)dp; + pimd%‘-

0
F(q,p) =pi8fq(f), dF = 94

Thus the Hamiltonian vector field is

CPf 9 af
P ogoq; op: " 0q; 0q;”

Xp=—

where the last summand is recognized as grad  in local coordinates. Hence
Vo= pa% + X is Liouville and gradient-like for the Morse function

o(q,p) = %|p|2 + f(q) for f small enough.
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Remark 1.4.18. For Weinstein manifolds, one can describe a symplectic han-
dlebody decomposition of the underlying manifold in the following sense: attach-
ing a so-called Weinstein handle to a Weinstein manifold yields a new man-
ifold so that the symplectic form, Liouville vector field and exhausting Morse
function extend over the handle in such a way that the new manifold is still a
Weinstein manifold. The Morse function picks up precisely one critical point in
the handle, corresponding to a zero of the Liouville vector field. Moreover, the
manifold obtained this way is unique up to an appropriate notion of homotopy.
See [Wei91] for the original construction.

It turns out that Weinstein domains are subject to a strong topological con-
straint.

Lemma 1.4.19 ([CE10, Lemma 2.21]). Let (W?" w,V,$) be a Weinstein do-
main. Then the index of each critical point of ¢ is at most n.

Proof. Denote the flow of V' by ¢, and recall that since V is Liouville, we have
piw = elw, so we may write
w=etpiw.

Suppose p is a critical point of ¢ and W#(p) is the stable manifold associated
to p. For any ¢ € W#(p), we hence have ¢.(q) — p for t — co. As in particular
wy = e tpfw, for all ¢, we obtain

Wg = tgrgo e 'iw, = 0w, =0.
Thus w vanishes on W#(p). This implies that WW*(p) is an isotropic submanifold

of W. Hence the dimension of W?*(p), which equals to 2n — ind(¢) because V'
is gradient-like for ¢, is at most n, as desired. U

Thus, any Weinstein domain W?" admits a handlebody decomposition with
handles of index no greater than n.

1.4.3 From Stein to Weinstein and Back: A Brief Stopover
In their book with the same title [CE10], Cieliebak and Eliashberg explain how

Stein and Weinstein structures are equivalent up to deformation. We refer to
the reader to the book for the proof. In what follows, we will outline the main
results.

The Road from Stein to Weinstein

To a Stein cobordism (W, J, ¢), we can always associate a Weinstein cobordism
structure. Denote this by the functor 20:

w(‘]v ¢) = (w¢’ V¢7 ¢)a

where wy, = —dd®¢, and Vy = grad, with respect to the metric g, induced by
wge. This is indeed a Weinstein manifold: wy is symplectic by J-convexity of ¢
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and J-compatible as J is integrable. We have seen in Lemma 1.4.7 that Vy is a
Liouville vector field. The gradient itself is evidently gradient-like for ¢, and ¢
is constant on OW already by the definition of a Stein cobordism.

Remark 1.4.20. The considerations regarding the indices of handle decompo-
sitions of a Weinstein domain hence carry over to Stein domains. Therefore, a
necessary condition for a manifold 2" to admit a Stein structure is that there
is a handlebody decomposition of W where no handle has index > n.

The Road from Weinstein to Stein

Given a Weinstein structure (w, V, ¢) on a manifold W, it is highly nontrivial to
construct a complex structure J on W making (W, J, ¢) into a Stein manifold,
and in fact, this is one of the main results of [CE10].

Theorem 1.4.21 ([CE10, Theorem 1.1(a), Theorem 13.9]). Let (W,w,V, @) be
a Weinstein manifold. Then there exists a Stein structure (J,¢) on W so that
the Weinstein structures

(w,V,¢) and (J, $)

are homotopic. Note that the function ¢ is fized.

As a consequence of this theorem, the notions of Stein and Weinstein fillabil-
ity are seen to be equivalent. Indeed, given a Weinstein filling (W, J, ¢) of a
contact manifold, we may apply Theorem 1.4.21 to deform it into a Stein do-
main while keeping the contact structure induced by the contact form —d®¢
invariant.

Similarly, the fact that any Stein filling is also a Weinstein filling follows from
the observation that any Stein domain (W, J, ¢) is a Weinstein domain with
Weinstein structure 20(J, ¢), where the J-convex function ¢, and thereby the
contact structure on the boundary, remains unchanged.

Another important theorem for us concerns the existence of Stein (and hence,
Weinstein) structures.

Theorem 1.4.22 ([CE10, Theorem 8.15]). Let W?2" be an open smooth man-
ifold of dimension 2n # 4 which admits an almost complex structure J and
an exhausting Morse function ¢ with no critical points of index greater than n.
Then J is homotopic through almost complex structures to an integrable almost
complez structure J such that ¢ can be reparametrized to be J-convex. That is,
W admits a Stein structure.

A topological analogue in dimension 4 is due to Gompf [Gom98]:

Theorem 1.4.23 ([Gom98], [CE10, Theorem 1.6]). Let V' be an oriented open
topological 4-manifold which admits a (possibly infinite) handlebody decomposi-
tion without handles of index greater than 2. Then V is homeomorphic to a
Stein surface.
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The significance of these theorems is that they allow us to see that the total
space of a Lefschetz fibration, introduced in the following chapter, admits the
structure of a Stein domain.
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Chapter 2

Lefschetz and Lefschetz-Bott
Fibrations

Lefschetz fibrations and their generalizations, Lefschetz-Bott fibrations, will be
the main tool in this text to obtain symplectic fillings, although we will not see
this until Section 3.3.

Lefschetz fibrations can be considered as a complex analogue of Morse functions,
and can be used to give a topological description of the total space in the same
fashion, as will be explained in Section 2.1. In the second part, we will review
Lefschetz fibrations in the context of symplectic manifolds, before generalizing
to symplectic Lefschetz-Bott fibrations in Section 2.3.

2.1 Topological Lefschetz Fibrations
Definition 2.1.1. Let E?" be an even-dimensional manifold and S be a com-
pact surface. A proper map 7 : E — S is called a Lefschetz fibration if

e all its critical points E''* are contained in int(E);

e near each critical point in £ and each critical value in S, there exist charts

(U,0) and (V, 1), respectively, in which

Toroo 1:C" = C

(21, ...y 20) = 25 4.+ 22,

Let us call such coordinates Lefschetz charts.

One sometimes calls a Lefschetz fibration positive if the complex charts are
orientation preserving, which we shall assume henceforth.
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We will at times simply write (E, ) for Lefschetz fibrations whose base is clear
from the context, and refer to Lefschetz fibrations as topological Lefschetz
fibrations in contrast to symplectic Lefschetz fibrations introduced in Defini-
tion 2.2.1

Remark 2.1.2. The second item in Definition 2.1.1 implies that critical points
of Lefschetz fibrations are isolated, i.e, E'' is a finite set of points.

Let us start right away with an example.
Example 2.1.3. Consider the polynomial fi € C[z1,..., z,+1] defined by
G e L k)
for some integer k > 1, and let
Vi(e) = {z € C"™ | fu(2) = €}
for some € > 0.
Claim 2.1.4. The projection map
7 Vi(e) = C
(215« Zna1) > Znat
is a Lefschetz fibration.

Proof. Let us first find the critical points of 7. Note that

k+1 _ 2 2
Zpil = €— 27 — ... — Z,.

Differentiating this equation, it follows that
(k+1)2F 1dzni1 = —2(z0d2o + . .. + 2,d2y,).

Suppose now that z = (z1,...,2n+1) € Vi(e) is a critical point of 7, which
means dn, = (dzp41)z = 0.

Case I: z,,1 =0

If 2,41 = 0, then also z; = 0 for i < n, but 0 = (0,...,0) ¢ Vi(e). Therefore,
critical points have nonvanishing z,1-coordinate.

Case II: 2,41 #0

If 2,41 # 0, this implies that dz,1 = dr vanishes for all (0, ...,0, z,4+1) € Vi(e).
Hence for pg+1 a (k+ 1)-th root of unity, the points

)\l ::(07'-'a07/’t§q+1)7 l:Oa-'-7k7

are the only critical points of .
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It remains to find complex charts to bring m into the standard form. Define
Pz =le—22— ... =2, @0, = arg(e — 22 — ... — 22).
We can parametrise Vi (¢) near \; by

o;: C" — Vi(e)

= g + 2wl
(21, .-y 2n) — (zl,...zn,pz’“+ exp (z%)) ,

which is a complex chart when restricted to a small enough neighbourhood of
0 € C™. Note that 0;(0) = A\;. Then

L %+ 2l
mooy(z) =ps " exp (Zsok:ilﬂ>

and 7 o o; maps a neighbourhood of zero in C" to a neighbourhood of p; € C.
On a small neighbourhood of p;, the map

7:C—=C

w1 —wht!

is biholomorphic. Since
Tomooy(z) =22 +...+ 22,

the maps o; and 7 provide the desired chart description near each critical point
A;, and thus 7 is a Lefschetz fibration. O

2.1.1 Vanishing Cycles

We now study the fibers of Lefschetz fibrations. Recall the following fundamen-
tal lemma:

Lemma 2.1.5 (Ehresmann fibration lemma). Let 7 : X — Y be a proper
submersion between connected smooth manifolds. Then 7 is a fiber bundle, that
is, locally trivial. In particular, the fibers are all diffeomorphic.

Away from the critical points, a Lefschetz fibration 7 : £ — S is, by definition,
a smooth submersion, and hence the fibers E, for z € S\ m(E“") are diffeomor-
phic. Such fibers are called regular, as opposed to critical or singular fibers
E,, for o € m(E®). We will denote the abstract regular fiber of a Lefschetz
fibration (F, ) by the letter F.

The critical fibers can be better understood through vanishing cycles.

Definition 2.1.6. Let p € E“ be a critical point and (U, o), (V,7) be Lef-
schetz charts near p and 7(p), respectively. On U, the regular fibers are then
diffeomorphic to

(romoo™)7(2)
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for some z € V' \ {0}. Multiplying 7 by some unit complex number, we may
assume that z = ¢ > 0 lies in R, and by possibly scaling (U, o), we may assume
o to be a diffeomorphism between U and the closed unit disk D?**t2 c Cr+1.
The fiber near U will then be diffeomorphic to

ENU={zcC" |z +...4+22 =t} nD>"*?
n n 2 2 2 2
={(xy) e R" xR" [ [[x]” = [lylI" = ¢, x,3) =0, [[x[" + lly[” < 1},

where we identify z = x+iy. Define the vanishing cycle ~ of the critical point
p to be the real part of this set, which is

v ={(x,0) | [x|* =t} = 5",

Note that for n = 2, E; N U is diffeomorphic to a one-sheeted hyperboloid; in
this case, the vanishing cycle corresponds to the closed curve around its “waist”.

From this definition, we see how to obtain the singular fibers from nearby regular
fibers:

Proposition 2.1.7 ([OS04b, Section 10.1]). Let 7 : E — S be a Lefschetz
fibration with regular fiber F'. If p is a critical point of 7, the singular fiber over
7(p) is obtained by considering nearby fibers E; for t > 0 and taking t — 0, or
equivalently, by collapsing the vanishing cycle v C F of p.

Let us describe the fibers near p more generally. Scaling x by setting
1
X' =—x

2
t+yll

)

we obtain that

1—t
v ={ ey =1, 60 =0 Iyl < 25
— DTT*Sn_l,

for r = % The vanishing cycle thus corresponds to the zero section of

T*Sn1,
2.1.2 The Topology of the Total Space

This section explores the analogy of Lefschetz fibrations to Morse functions by
using them to give a topological description of their total space.

For this purpose, suppose 7 : 2" — S is a Lefschetz fibration with regular fiber
F'. Consider the function
mr = —Re(n).

On a Lefschetz chart near a critical point p, g takes the form

TR(X,y) = —21 — ... =@+ Y Y
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Thus Lefschetz charts are Morse charts for 7r, and each critical point of 7R is
of index n.

If D C ¥ is a disk containing no critical values, then 7=1(D) = F x D. It is
globally trivial since D is contractible. As we enlarge D’ to contain a single
critical value s = 7(p) and apply an isotopy such that s lies on the real axis,
standard Morse theory tells us that 7= (ID’) is diffeomorphic to 7—1(ID) with an
n-handle attached to the unstable manifold of p at a subcritical level s — ¢ of
mr. More precisely, following the Morse charts from above, this means we glue
an n-handle to

W(p) Nzt (s — 1) 2 {(x,0) € B" x B" | [[x]* = 1}.

This, however, is precisely the vanishing cycle.

Remark 2.1.8. Attaching an n-handle requires two pieces of data in order to
be completely specified: an (isotopy class of an) embedding sg : S"~1 < M
corresponding to the attaching circle, and a framing of so(S™~1). The above
proposition has specified only the isotopy class of the embedding circle as the
vanishing cycle. For more details regarding the framing, see [0S04b, Chapter
10)].

Suppose now that 7 : E?" — D is a Lefschetz fibration over the disk with regular
fiber F' and critical values (x1,...,z) . The previous discussion proves

Proposition 2.1.9. The total space E*" admits a handlebody decomposition as

E=DxFU(JH),

where each H; is an n-handle glued to the vanishing cycle of the critical point
Zi-

If F is compact, the function 7y is automatically an exhausting Morse function.
When E has dimension 4, Theorem 1.4.23 yields the existence of a Stein struc-
ture on E. In order to use Theorem 1.4.22 in higher dimensions, F is required
to admit an almost complex structure J, which cannot be assumed in general.
We will return to this case in Section 3.3, see in particular Remark 3.3.3.

2.1.3 Monodromy

Monodromy is a fundamental notion describing the behaviour of a holomorphic
function near a critical value. The study of singularities of holomorphic func-
tions extends significantly beyond the scope of what will be relevant for our
considerations, and we refer to [AGV8&8] for a more thorough treatment. The
following material is adapted from Chapter 1 of the same reference.

Suppose 7 : E — D is a Lefschetz fibration over the disk and choose an Ehres-
mann connection on F. Recall how parallel transport is defined.
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If v : [a,b] — D is any path in the base, we may consider for any p € E,
the unique horizontal lift X, (p) € T,E of the vector ¥'(t) € T,)D such that
Dr(p)[X,(p)] = +'(t). The vector field X, hence defines a horizontal vector
field on the total space of v*E, and its flow ; defines the parallel transport
maps

Py Eya) = By
P~(P) = Pv-a(p)-
Note that if 7 is proper, then parallel transport exists for all time.

Now fix a regular value zp € D and let 7 : [0,1] — D be a loop based at zy whose
image is contained in D\ 7(E).

Parallel transport hence yields a family of maps

Ly = Pyl E., — E’Y(t)‘

Definition 2.1.10. The map
pry = py =11 By = By
is called the monodromy of the fibration .

The monodromy is well-defined up to isotopy under different choices of repre-
sentatives of homotopy classes of 7, as well as connections. To see this, suppose
first that ¢ is a loop based at zp homotopic to -y via H : [0,1] x [0,1] — D. Then
(PH(s,))sel0,1] 18 an isotopy between p, and ps.

As for the choice of connection, let p be the parallel transport system arising
through the choice of another connection and set K; := Prljo.yy- Evidently,
idp., = Ko =To. Then K;'oT, is an isotopy from the identity to K;'oTy,
whence K is isotopic to I'y.

Remark 2.1.11. The map I' induces a trivialization of the pullback bundle
~v*E — [0,1] by
I:E,, x[0,1] =-~"FE
(P, 1) = Tu(p).
From this description, it is evident that if we consider the loop 7 as having

domain S!, then the pullback bundle v*E — S! is diffeomorphic to a mapping
torus whose gluing is the monodromy p.:

V'E = Bz x [0,1]/(p,1) ~ (14(p), 0)-

If v bounds a disk embedded in D \ 7(E), then « is contractible, and hence
ft~ is isotopic to the identity. However, if v encircles a critical value in I, the
monodromy will in general not be trivial. In many cases, it will be given by
what is known as a Dehn twist, which we describe in the next section.
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2.1.4 Dehn Twists

Dehn twists describe the diffeomorphism obtained by cutting along an embedded
sphere S™, twisting by one full rotation, and regluing. In the symplectic setting,
it is well known that Dehn twists generate the symplectic mapping class group
of surfaces [Waj99]. It was first noticed by Arnol’d in [Arn95] that Dehn twists
are symplectomorphisms with respect to the canonical symplectic structure on
T*S™. Moreover, Seidel [Sei97] established that in certain cases, Dehn twists
present a nontrivial element of the symplectic mapping class group: symplectic
Dehn twists are smoothly isotopic to the identity, but not necessarily via an
isotopy of symplectomorphisms.

Here we follow [Obal8] in the definition of Dehn twists adapted to the symplectic
setting, starting by defining them on 7%S5™.

We will use the identification

T*S" = {(a,p) € R"™ x R™*! | lq|| = 1, (q, p) = 0}.

In these coordinates, the canonical Liouville form on 7%S™ may be written as
Ao = Z?zl pidg;, and the zero section corresponds to

i0(S™) = {(q,0) € T*S™}.

Note that ig(S™) is Lagrangian. We will now construct a Hamiltonian action on
T*S5™, through which we then define the Dehn twist. Define the Hamiltonian
function

w:T*S" \ig(S™) = R
(a,p) — llpll-
The Hamiltonian vector field X, is then
n+1 n+l1

X, =— |praq] ||PHZ%8

Ipl

Claim 2.1.12. The Hamiltonian vector field X,, has periodic orbits.

Proof. Letting pr : T*S™ — S™ denote the projection and ¢:(q,p) = (q(t), p(t))
be the flow of X, consider 6(t) = pro ¢(q,p). We show this is a geodesic of
S

Note first that

(d'(£),8'(8)) = | Dpr((a(®), ()X, ((alt), p()))]]*

2

n+1

)~ ij

Ii
—
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Thus we have

d ! /

0 (0,5'(0)
=2(Va ()(1).5'(1)).

which implies V%(d') = 0, so J is a geodesic of S™. The geodesics of S™,
however, consist of 2m-periodic great circles. O

0=

Thus there is a Hamiltonian S*-action on T*S™ \ io(S™) given by €% - (q,p) =
1(q, p). From the description of the geodesics of S™ as great circles, we obtain
that the action is explicitly given by
i -1 . .
e’ - (q,p) == (cos(t)q + [Ip| " sin(t)p, — ||p| sin(t)q + cos(t)p).
Denote the action by
o:SY = Diff(T*S™ \ ig(S™))
Eit — O¢,
and note that o,(q,p) = (—q, —p). This extends to all of T*S5™, restricting to
the antipodal map on i¢(S™), which we denote by A.

We now get to defining the prototype of a Dehn twist. Take a smooth function
7 : R — R such that

e 7(t) =0 for t > to for some to,

e 1(t) +n(—t) =27 for all ¢.
Note that this implies 7(0) = 7. The model right-handed Dehn twist
7:T*S™ — T*S™ is now defined by

_ { omaen(@p), P#0,
S R

Remark 2.1.13. The model right-handed Dehn twist has compact support by
definition, and is a symplectomorphism of (T*S™, dAcan) by [Sei99, Section 6].

Visualising 7*S! as a cylinder, the action of a model Dehn twist is precisely
cutting along the zero section, fully twisting one end counterclockwise, and
regluing.

We proceed to define Dehn twists along any Lagrangian sphere in a symplectic
manifold (W, w), which we define as a Lagrangian submanifold L of W together
with an associated framing, that is, a diffeomorphism

fiS" L

defined up to reparameterization by orthogonal transformations. Recall the
Weinstein tubular neighbourhood theorem, originally from [Wei71], as seen in
[Can06]:
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Theorem 2.1.14 ([Wei71], [Can06, Theorem 9.3|). Let (W?", w) be a symplec-
tic manifold and i : L — W be a Lagrangian embedding of an n-manifold L, that
is, an embedding such that i*w = 0. Denote the zero section by ig : L — T*L.
Then there exists ¢ > 0 and a symplectic embedding j : DL — W such that
the following diagram commutes:

DT*L(—>W

A

By the Weinstein tubular neighbourhood theorem, given a Lagrangian sphere
and its framing f, there is a symplectic embedding j : D T*L < W such that
joig = f. Now let n: R — R be a function as above with ¢y = ¢/2, denote by
7 the corresponding model Dehn twist, and set

_ [ jorej™l, welm(j),
() = { z, x ¢ Im(5).

The map 7, : (W,w) — (W, w) is hence a compactly supported symplectomor-
phism and is called the right-handed Dehn twist along L.

With this in hand, one can prove the following for Lefschetz fibrations whose
total space is 4-dimensional:

Theorem 2.1.15 ([OS04b, Proposition 10.1.5], [GS99, Section 8.2]). The mon-
odromy along a loop encircling a single critical value of a Lefschetz fibration is
given by a right-handed Dehn twist along its vanishing cycle.

See also the introduction of [AGVS&8] for a more explicit computation.

For Lefschetz fibrations in higher dimensions, Theorem 2.1.15 holds verbatim if
one can make it into a symplectic Lefschetz fibration (see Definition 2.2.1 and
Theorem 2.2.9). We note that the Lefschetz fibration 7 from Example 2.1.3
can be made symplectic with either the standard symplectic structure or a
symplectic structure induced by the Fubini-Study form (see [KKK16] or [Oba20]),
so that by computing its vanishing cycles, we obtain the monodromy as the
composition of Dehn twists along the vanishing cycles.

Example 2.1.16. Recall that we set
Vile) = {(215- -, Zny 2n41) € C"TH |28 .o 4+ 22 + 200 =},

and 7(21,...,2n41) = Zny1. Fixing a critical point A\; € Vi (e€), the vanishing
cycles are o;(7:) for some ¢ > 0 small enough, where

={xeC"|Im(x) =0, |x|* =t}.
For t < 1, we have p, =1 —t? > 0, and ¢, = 0, so that
() = {(x, (1 = %)) € C"** | Im(x) = 0, [|x[|* = t} =: 7.
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The vanishing cycle « is evidently independent of [, and thus all critical points
A; have v as their associated vanishing cycle. Consequently, by Theorem 2.2.9,
the monodromy of 7 along 9D is isotopic to Tff“, the composition of (k + 1)
right-handed Dehn twists along .

Note that so far, the total space of this Lefschetz fibration was not compact.
To tie this together with the setting in the rest of this thesis, restrict © to the
compact subdomain
2n+2
Vk(e) n Dlrj_j; .

For a regular fiber over some ¢ > 0, we obtain

n
7 ) ={(21, -, 201) €ECT 2+t T =6 ) P <1417}
=1
~ 2 2 2 2
= {(xy) €R" x R" | [x|* — llyl® = e = t**", [IxII* + [ly|* < 1 +5 -t}
> {(x,y) eR" xR | ||| = 1, [ly]|* < re}
gDT*Snfl

where

< 1 2 gkl
x = , and r; = Rkl €t

2 2 ’
e—tht 4|yl

which is defined for ¢ small enough. The vanishing cycle is hence

({(x,0) e R" x R" | |Ix||* = t})

o) = o1
{(@1,. .., 20,1 —1),0) € R™TL X R | [|x||* =1},

which is just the zero section of DT*S™~!. Thus in conclusion, the regular fibers
of 7 can be identified with DT*S™~!, and the monodromy of 7 consists of k -+ 1
right-handed Dehn twists along the zero section.

We will return to the fiber 7=1(¢) later on in Section 5.5, where we construct
distinct fillings of the Ag-type singularity.

2.2 Symplectic Lefschetz Fibrations

Now that we are familiar with the topological properties of Lefschetz fibrations,
we consider them in the context of symplectic geometry. It turns out that
some more subtlety is required in their definition. The theory of symplectic
Lefschetz fibrations, which is also known as symplectic Picard-Lefschetz theory,
is essentially due to Seidel. The main theory was largely developed in [Sei03],
and a comprehensive overview is contained in [Sei08], which is the main reference
for this section.

Definition 2.2.1. A symplectic Lefschetz fibration is a tuple (E, 7, Q, J, j)
consisting of
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e an even dimensional manifold F;

a smooth proper map 7 : E — C whose critical points E!® lie in int(E);

a closed 2-form 2 on FE;

an almost-complex structure J defined on a neighbourhood of the critical
points BT = {q1,...,qx} of ;

e a complex structure j on a neighbourhood of the critical values in C com-
patible compatible with the standard orientation.

These are subject to the following conditions:
(i) 7 is (J,j)-holomorphic near E<'* wherever J and j are defined;

(ii) € is nondegenerate on the vertical bundle TVE = ker Dr and J-Kahler
near each g; where J is defined;

(iii) The complex Hessian at any critical point is nondegenerate as a complex
quadratic form.

We will be specifically interested in symplectic Lefschetz fibrations over the unit
disk D C C whose fibers have nonempty boundary. In this case, we require two
more conditions:

(iv) the boundary OF consists of the vertical boundary 0,F and the hor-
izontal boundary 0, F, which meet in a codimension two corner. The
two boundary components are defined as

0,E == 7~ 1(dD), and O, = | J 0 (v (y)).
yeD

For all x € 9, E, we require (ker(Dm(z)))? C T,0LE.

(v) mla,g maps 0, F submersively onto dD, and 7 is horizontally trivial,
which we take to mean the existence of a tubular neighbourhood vg (0, E)
of Op F and a trivialization ¢ so that

5 (O E) - vp(0FE,) x D

commutes, where F, is a regular reference fiber of 7. Furthermore, the
map ¢ should provide the following identification of €2:

(6™ QL Qrp. + Kn*wy,
for some K > 0 and wp, some symplectic form on D.

An exact symplectic Lefschetz fibration is a symplectic Lefschetz fibration
(E,7,Q =d\,J,j) so that the closed 2-form Q € Q?(E) is exact.
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Seidel’s monograph [Sei08] formulates the theory for exact Lefschetz fibrations.
Since we are mainly concerned with strong symplectic fillings obtained through
Lefschetz fibrations (recall that the symplectic form w on a symplectic filling
(W,w) of some contact manifold must be exact near the boundary), we shall
do the same. The results also hold for non-exact symplectic Lefschetz fibra-
tions, however: the results from fibered Picard-Lefschetz theory discussed in
Section 2.3 are formulated in the non-exact setting, and specialise to the results
for the Lefschetz case discussed here.

Remark 2.2.2. By the complex Morse lemma [Arn-+98], the condition that
there exist integrable complex structures J and j near the critical points and
values, respectively, in such a way that 7 is (J, j)-holomorphic wherever they
are defined implies the existence of Lefschetz charts (U, ¢) and (V1) near E°it,
so that

1

Tomoo L2, 2m) 24 22, (2.1)

just as in Definition 2.1.1. Conversely, complex charts as above give rise to
integrable almost complex structures near E°,

Just as topological Lefschetz fibrations are locally trivial fiber bundles away from
the critical points, symplectic Lefschetz fibrations are symplectic fiber bundles
on E\ Bt

Definition 2.2.3. A symplectic fiber bundle (E, 7, ) consists of a manifold
E equipped with a closed 2-form 2 € Q2(E) and a fiber bundle 7 : E — S over
a smooth surface S, such that 2 restricted to any fiber of 7 is nondegenerate.

Indeed, condition (ii) in Definition 2.2.1 implies that symplectic Lefschetz fibra-
tions are symplectic fiber bundles away from Et: let v be a curve which lies
entirely in the smooth part of the fiber F., then 7o~ = z, so that Dr[y'] = 0.
Hence T, E, C ker(Dw(z)) for all x € E,, which means that 2 is nondegenerate
on all fibers.

2.2.1 Symplectic Parallel Transport

Recall that in order to define the monodromy of a topological Lefschetz fibration
in Section 2.1.3, we resorted to a choice of Ehresmann connection on the fiber
bundle E\7(E") and set the monodromy along a loop v to be parallel transport
along this loop. It turns out that symplectic fibre bundles come with a canonical
notion of symplectic parallel transport, which we use to define the monodromy in
the same way, as well as the vanishing cycles of a symplectic Lefschetz fibration.
We follow [WW16] in doing so.

Proposition 2.2.4 ([WW16, p. 7]). Let (E,m, Q) be a symplectic fiber bundle
over a surface S. The distribution Hq of TE defined by

Ho = (ker(D7(2)))? C T, E

is an Ehresmann connection.
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Proof. To prove that Hq defines a connection, we need to show that Dm(x)
maps Hq . isomorphically onto T5(,)S. So let v € ker D7(p) "Hq. The tangent
vector v being in the symplectic complement of the vertical bundle, we have

Qv,u) =0, forall u e T/ E.

However, v itself is in the vertical bundle, on which €2 was assumed to be nonde-
generate, so v = 0. As Q is nondegenerate on the vertical bundle, the subspace
Ha,. is two dimensional like 75 () S, so D7(x)|n, , is an isomorphism. O

We refer to this connection as a symplectic connection for reasons explained by
the next lemma.
Lemma 2.2.5 ((WW16, p. 7]). Let m: (E,m) — S be a symplectic fiber bundle
and v : [a,b] — S be a path in the base. Then the parallel transport maps
associated to the connection Hgq

Py - (E’Y(a)7Q|TE~,(a,>) - (E'Y(b)7Q|TE'y(b))
are symplectomorphisms.
Proof. This follows from an observation on horizontal vector fields with respect

to the symplectic connection. If V' € X(FE) is any horizontal vector field and E,
is any fiber, then

LyvQlre, = (dwQ)|re, = dlwQ|re,.) =0,

since the tangent spaces T'E, lie in ker( D7), so by definition of Hq, 1vQ|7g, = 0.

This implies that the flow of V' preserves the restriction of Q to the fibers, and
as parallel transport is defined as the flow of the horizontal vector field X, this
finishes the proof. U

We now extend symplectic parallel transport to symplectic Lefschetz fibrations
(E,7,9Q,J,7). On E\ E® 7 is an ordinary symplectic fibration, so parallel
transport is well-defined for any path with image in S\ 7(E"). We extend
parallel transport to singular fibers. Let « : [0,1] — S be an embedded path so
that (1) = zg € 7(E) and 7([0,1)) € S\ 7(E). Such a path is called a
vanishing path.

Then parallel transport extends to a continuous map
Py Eyo) = Eyqy, e }1}% P04 (2).

For more details on this construction, see [Sei03, Lemma 1.13].
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2.2.2 Symplectic Vanishing Cycles and Monodromy

For a topological Lefschetz fibration (F,7) with regular fiber F', we used the
local coordinate description near zq € E given by Lefschetz charts to define
the vanishing cycle corresponding to xy. We concluded that the singular fiber
over m(xp) can be obtained from F by collapsing the vanishing cycle.

It is this property that motivates the definition of vanishing cycles in the sym-
plectic setting as those points in a given fiber that map to the critical point of
interest under symplectic parallel transport.

Definition 2.2.6. Suppose (E?"*2 7 Q) is an exact symplectic Lefschetz fi-
bration over S. To any vanishing path -, we associate its vanishing thimble
defined by

T,=<z€ U E | tii;nl Pl (@) = @0 ¢ U {20}
tel0,1)

The vanishing cycle associated to y is defined to be

C’Y = 8TV =T,N E’y(O)-

In his extensive monograph on symplectic Lefschetz fibrations [Sei08, (16b)],
Seidel explains that the vanishing thimble 7%, C E?"*2 is a Lagrangian subman-
ifold of the total space diffeomorphic to an (n + 1)-ball, and the vanishing cycle
c, C E?y?o) is a Lagrangian n-sphere in the fiber. Note in particular that the

Dehn twist 7¢., € Symp(E,(g)) is well-defined.

As for the monodromy of symplectic Lefschetz fibrations, we first make the
following observation.

Proposition 2.2.7. The monodromy of a symplectic Lefschetz fibration is iso-
topic to a symplectomorphism.

Proof. Recall from Section 2.1.3 that to define the monodromy p. of any fi-
bration along a loop v in the disk D, one chooses an Ehresmann connection on
the smooth part of the total space and sets py = p,. In the case of symplectic
Lefschetz fibrations, the canonical symplectic connection yields a parallel trans-
port system consisting of symplectomorphisms by Lemma 2.2.5, which proves
the claim. O

In fact, we have

Theorem 2.2.8 (|Sei03, Proposition 1.15], [Sei08, (16¢)]). Let v :[0,1] — S be
a vanishing path, and £ be a loop in S “doubling” v as in Figure 2.1, winding
anticlockwise around v(1). Then the monodromy of ™ along ¢ is symplectically
isotopic to the Dehn twist along the vanishing cycle C,:

[1e] = [1c,] € Symp(E(0))-
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7(0)
Figure 2.1: The loop ¢ obtained by doubling ~

Therefore, any critical point of an exact symplectic Lefschetz fibration gives rise
to an embedded Lagrangian sphere in the regular fiber F', and establishes the
Dehn twist as an element of its symplectic mapping class group.

Conversely, given any embedded Lagrangian sphere C' in an exact symplectic
manifold (F,w), one can construct an exact symplectic Lefschetz fibration over
the unit disk S = D whose regular fibers are symplectomorphic to (F,w), and
which has C as its only vanishing cycle [Sei08, (16e)].

This result extends to multiple critical values:

Theorem 2.2.9 ([Sci08, (16¢), (16€)]). For an ezact symplectic Lefschetz fibra-
tion m: (E,Q) — D with multiple critical values and a corresponding collection
of vanishing paths (y1,...,vk) intersecting only a common starting point x € F,
the monodromy along 0D is symplectically isotopic to

Tc,, 0o TC

Y1 V"

On the other hand, given a collection of embedded Lagrangian spheres (C1, ..., Ck)
in an exact symplectic manifold (F,w), there is an exact symplectic Lefschetz

fibration over the unit disk with regular fibers symplectomorphic to (F,w) and

whose collection of vanishing cycles is given by (C1,...,Ck).

2.3 Symplectic Lefschetz-Bott Fibrations

We generalize the results of Section 2.2 to Lefschetz-Bott fibrations, which can
be considered as Lefschetz fibrations whose critical locus is a smooth submani-
fold of the total space instead of a discrete subset.
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The related theory is also known as fibered Picard-Lefschetz theory, and was
mostly known to Seidel circa 1998 (unpublished notes). A first comprehensive
reference was given by Perutz [Per07], which largely shares the structure of
Seidel’s [Sei03].

For our purposes, it suffices to consider Lefschetz-Bott fibrations over C, al-
though one could define them over any surface .S as we did for Lefschetz fibra-
tions. We use the definition given in [Oba20, Section 3.2].

As mentioned, the main generalization in sympletic Lefschetz-Bott fibrations
from symplectic Lefschetz fibrations consists in allowing the critical locus E°it
to be a smooth submanifold, which requires a suitable modification of the non-
degeneracy condition for the complex Hessian. To this end, we need a piece of
vocabulary:

Definition 2.3.1. Let W?2" be a smooth manifold, equipped with an almost
complex structure J and a closed 2-form €. Let N be an almost complex
submanifold of (W, J). The form € is said to be normally Ké&hler near N if
there exists a tubular neighbourhood vy, (V) of N in W which can be foliated
by normal slices {D,},cn so that J|rp, is integrable and Q|rp, is J-Kéhler
for each z € N.

According to [Per07], this is a technical convenience that could most likely be
shown to always be satisfied after a perturbation of J and 2. We now state the
definition of symplectic Lefschetz-Bott fibrations in full for the convenience of
the reader, though one should note that only the conditions on E* and the
Hessian differ from Definition 2.2.1.

Definition 2.3.2. A symplectic Lefschetz-Bott fibration is a tuple (E, 7, Q, J, )
consisting of

e an even dimensional manifold F;

e a smooth proper map 7 : E — C whose critical points E''* lie in int(E);

a closed 2-form 2 on F;
e an almost-complex structure J defined on a neighbourhood of E°"t C E;

e a complex structure j on a neighbourhood of the critical values in C com-
patible compatible with the standard orientation.

These are subject to the following conditions:
(i) 7 is (J,j)-holomorphic near E'* where J and j are defined;

(i) E* is a smooth submanifold of F with finitely many connected compo-
nents;

(iii) €2 is nondegenerate on the vertical bundle TV E = ker Dr;

(iv) Near E™' where J is defined, € is nondegenerate, compatible with .J, and
normally K&hler with respect to J;
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(v) The complex normal Hessian D?7,|rp,e7p, is nondegenerate for all x €
E°t where D, is a normal slice of a tubular neighbourhood of E°rit.

Again, we are mainly interested in the case where the base is the unit disk D and
regular fibers have nonempty boundary. In this case, we additionally impose
items (iv) and (v) from Definition 2.2.1.

The complex structures J and j will occasionally be suppressed from the nota-
tion, so that we refer to symplectic Lefschetz-Bott fibrations by (E,w, Q) or by
m: (E,Q) — C.

When we are interested only in topological properties of Lefschetz-Bott fibra-
tions, notably in section Section 5.6, where we distinguish a collection of sym-
plectic Lefschetz-Bott fibrations, we use the notion of a topological Lefschetz-
Bott fibration. A topological Lefschetz-Bott fibration is a tuple (E, 7, <, J, j)
for which F, 7, J, and j satisfy the same conditions as a symplectic Lefschetz-
Bott fibration, but where Q is only required to be a closed 2-form defined in
a neighbourhood of E<, Ttem (iii) and horizontal triviality will no longer be
required. We explained in Section 2.2.1 how ker(Dw(z))% defines a canonical
connection on F if  is global, so in the case of topological Lefschetz-Bott fi-
brations, instead of item (iv) from Definition 2.2.1, we require H, C T,0, E for
all x € 9, F, where H is a chosen Ehresmann connection.

Remark 2.3.3. By the parametric version of the holomorphic Morse lemma
[Arn+98], for a topological Lefschetz fibration (E?",(,7), there exist charts
(U, o) on E near each critical point 2o € E“'* and (V, 7) near each critical value
on C in which we have

TOWOJil(Zl,...,Zn):ZZ?,

J=1

where k is the corank of D7(xg) (or the codimension of E<'* C E).

2.3.1 Vanishing Cycles

In our study of the singular fibers of Lefschetz fibrations, vanishing cycles have
always consisted of a subset of the regular fiber; the singular fiber is then ob-
tained by simply collapsing the vanishing cycle in the topological case, or by
parallel transporting it along a vanishing path in the symplectic setting. For
Lefschetz-Bott fibrations, the singular fibers are also obtained by contracting
the corresponding vanishing cycle, although the contraction will no longer be to
a single point.

Note that symplectic Lefschetz-Bott fibrations are symplectic fiber bundles in
the sense of Definition 2.2.3 away from E"*. The parallel transport maps p,
along paths v in C can be extended to parallel transport along a vanishing path
just as we did for Lefschetz fibrations [Per07, Section 2.3.1].
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Definition 2.3.4. Let 7 : (E,Q) — D be a symplectic Lefschetz-Bott fibration
over the unit disk and v : [0,1] — D be a vanishing path to a critical value of
7. To any connected component N of Eit N E. 1), associate the vanishing
thimble

Tyn=Rz¢€ U By | t£1511 Prlirey (@) €N p UN.

te[0,1)

Define the vanishing cycle associated to v by

C,y = BT%N =T, NN E'y(0)~

The following lemma provides some intuition on the structure of the vanishing
cycles.

Lemma 2.3.5 ([Per07, Lemma 2.5]). Cy is a smooth coisotropic submanifold
of E(0), and the restriction
py:Cy = N

is a smooth fiber bundle with spheres S* as fibers, where k is the rank of Dr.
The structure group of C., X N can be reduced in a canonical way to O(k+1).

The vanishing cycle C, consists of those points in E, ) for which the limit
parallel transport map p., is defined and lands in N C E°rit 0 E, ). The
singular fiber £, ;) can hence be seen to be obtained from a regular fiber £, o) by
applying p., which may be thought of as a deformation retract of the vanishing
cycle C, to the submanifold N.

[Per07, p. 782] provides a discussion on how Lemma 2.3.5 gives C, the struc-
ture of a spherically fibered coisotropic submanifold of the regular fiber E, ).
The significance of this result is that a generalization of the Dehn twist, called
a fibered Dehn twist, reviewed in the next section, can be defined along any
spherically fibered coisotropic.

2.3.2 Fibered Dehn Twists as Monodromy Maps

Following [CDIK14, Section 2], we describe a model situation of the fibered Dehn
twist. This time, the model is a contact manifold (P, a) whose Reeb orbits are
periodic, so that the flow of the Reeb vector field R, defines a right S'-action
on P. Note that in particular the Boothby-Wang bundles over integral sym-
plectic manifolds encountered in Definition 4.1.1 satisfy this condition. Choose
a function

f:0,1] - R

which is constantly equal to 27 in a neighbourhood of 0 and equal to 0 in a neigh-
bourhood of 1. Consider now (a part of) the symplectization of (P, «)

(P x [0,1],d(e'a)).
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On this domain, we construct a diffeomorphism equal to the identity near the
boundary by setting

¥ (x,t) = (x- f(t) mod 27, t).

The fact that v = id near the boundary follows from the choice of f. This is in
fact a symplectomorphism: let v; with a subscript denote the flow of the Reeb
vector field R,. Then

d * d * *
aiﬁ (e'a) = %djf(t)(eta) = Vi) (L, (@) +e'a),

The Lie derivative evaluates to

Liwr, = dipiyr, (€'@) + 1504 p, d(e' @)
= d(f(t)e") +1ppyale’dt Ao+ d'de)
=d(f(t)e') — f(t)e'dt

=—d (—f(t)et + /Ot f(s)e*ds + A> ;

where A is some integration constant. Thereby,

V*(efa) =ela —d (—f(t)et + /Ot f(s)e*ds + A) ,

which implies that ) is a symplectomorphism.

Definition 2.3.6. Suppose that (W,w) is a symplectic manifold with convex
boundary such that 0W admits a contact form whose Reeb orbits are periodic.
Then we may identify a collar neighbourhood with (P x [0,1],d(e’a)), where
(P = 0W, ) is a contact manifold just as above. Define a symplectomorphism
¥ of W by setting it to be ¢ on the collar neighbourhood and the identity on the
rest of W. The map v is called a right-handed fibered Dehn twist along
ow.

Remark 2.3.7. In fact, it is possible to define a fibered Dehn twist along
any spherically fibered coisotropic submanifold C' C W ([Per07], [WW16]). A
simple case of a spherically fibered coisotropic is that of a Lagrangian sphere L,
in which case a fibered Dehn twist along L reduces to a Dehn twist along L.

It is sometimes possible to establish relations between Dehn and fibered Dehn
twists. A particular result we will make use of in section Section 5.5, where
we construct distinct fillings of the Ag-type singularity, describes the fibered
Dehn twist along the boundary of a particular class of symplectic manifolds.
Set

Va(0) = (207...,zn)e(C"+1|Zz;.1:1 N Z|Zj|2§52
j=0 7=0
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Theorem 2.3.8 (|[AA16, Theorem 1.1]). Let wq be the symplectic form on Vy(9)
given by restricting the standard form on C*t'. With respect to this symplectic
structure, a fibered Dehn twist along OV4(0) is symplectically isotopic to the
product of d(d — 1)" ™1 right-handed Dehn twists.

Fibered Dehn twists can be realized as monodromy maps of symplectic Lefschetz-
Bott fibrations:

Theorem 2.3.9 ([Per07, Monodromy Theorem 2.16]). Let 7 : (E,Q) — D be
a symplectic Lefschetz-Bott fibration with a single critical value in int(D) and ~
a corresponding vanishing path. Then the monodromy along the loop obtained
by doubling v based is symplectically isotopic to a fibered Dehn twist along C.,
denoted by ¢, .

Moreover, an existence statement holds:

Proposition 2.3.10 ([WW16, Proposition 2.13]). Let (M,w) be a symplec-
tic manifold and C C M a spherically fibered coisotropic submanifold of M.
Then there exists a symplectic Lefschetz-Bott fibration m : (E,Q) — C with
a single critical value whose fibers are symplectomorphic to (M,w) and whose
monodromy is symplectically isotopic to a fibered Dehn twist along C.

Note that by scaling C, we may assume this Lefschetz-Bott fibration takes values
in D.

Similar results hold for multiple critical values, just as in the case of Lefschetz
fibrations [Sei08, (16e)].
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Chapter 3

Open Book Decompositions

To motivate this chapter, let us have a look at the boundary of the total space
of a Lefschetz-Bott fibration. Recall that a topological Lefschetz-Bott fibration
(E,m,J,j) with fiber F' over D is assumed to admit a decomposition of its total
space as OF = 0,FE U 9, FE, where

e 0,F := m71(9D); since 7|y, g is a locally trivial S'-bundle with fiber F,
it is a mapping torus whose gluing is 1, the monodromy of the Lefschetz-
Bott fibration. Denote this mapping torus by 9,FE = F(1).

o WE :=|],p0(m1(2)); as m|g, p has no critical values, it defines a fiber
bundle over D, which is contractible, and hence 9, F = 0F x D is trivial.

Both boundary components meet in the codimension two corner given by

00,E) = | | 0(x~"(2)) = O(0nE).

z€0D

Abstractly, this corner is diffeomorphic to F x S*. Hence the boundary of the
total space can be written as

OF = F(’l/}) UsFxst (8F X ]D))

Starting from any manifold F' and a diffeomorphism ¢ € Diff (F') which is the
identity near OF, the same gluing procedure yields a new manifold OB(F;);
the pair (F,) is known as an abstract open book.

In Section 3.1, we study general properties open books, before seeing when and
how OB(F;v) can be endowed with a contact structure in Section 3.2. Finally,
in Section 3.3, we return to Lefschetz-Bott fibrations to see how the total space
of a symplectic Lefschetz-Bott fibration with regular fiber F' and monodromy
¢ can act as a strong (or Stein, in the Lefschetz case) symplectic filling of the
contact manifold OB(F’; ).
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3.1 Abstract Open Books and Open Book De-
compositions

In this section, we first introduce the two flavours open books come in, and

then explain in Section 3.1.1 how to move between these notions. We finish the

section by examining different open book structures on 2. For an excellent and

thorough introduction to the subject, the author recommends [Etn05], although
we mainly follow [Gei08, Chapter 7] in this exposition.

Abstract Open Books
Definition 3.1.1. An abstract open book is a pair (F,1)), where
e F'is an oriented compact manifold of dimension 2n with boundary, and

e ¢ : F — F is a diffecomorphism which is equal to the identity near OF.

The diffeomorphism v is called the monodromy, and F is called the page of
the abstract open book.

Given an abstract open book with page F' and monodromy 1, we can construct
a (2n + 1)-manifold OB(F';4)): first, define the mapping torus

F() := F < [0,2x]/((2,2m) ~ (¢(2),0)).

This is a manifold of dimension 2n + 1 whose boundary is F x S!. Note also
that there is a natural fibration over S! given by

[z, ] = .

Next, consider F xD. This is also a (2n+1)-manifold with boundary 9F x S*, so
we can glue these manifolds together at their common boundary by the identity
map and set

OB(F;¢) := F(¢) Uppx st (OF x D). (3.1)

Remark 3.1.2. Note that OB(F;4) has no boundary. Moreover, gluing along
the boundary will not produce a smooth manifold in general. Therefore, one
should instead glue collar neighbourhoods of the boundary when the smooth
structure of OB(F';%)) is relevant in applications, as in Theorem 3.2.1 below,
where we will endow OB(F'; ) with a contact structure.

The manifold OB(F'; ) comes with a natural fiber bundle over S*: on F(v)), we
can take the obvious fibration [z, ¢] — ¢ from before, but now we need to extend
this to OF x D. Letting i : OF x D < OB(F';%) be the embedding obtained by
the inclusion into F'()U(OF x D) followed by the quotient projection, set

B :=i(0F x {0}).
Then we may define the bundle
p:OB(F;¢y)\ B — S*
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defined for [z, ] € F (1) by
p(lz, @) = o,
and for [z,7e'?] € OF x D by

[z, re’]) = .

The fibers of p are seen to be

p~Hp) = {lz, ¢l | & € F} Ugrxsi {(y,7¢') | y € OF, v € (0,1]} = int(F),

and they satisfy dp~1(p) = i(OF x {0}) = B.

Open Book Decompositions

Open book decompositions place more emphasis on the S'-bundle structure,
like the one just constructed.

Definition 3.1.3. An open book decomposition of a manifold M is a pair
(B, p) consisting of

e a codimension two submanifold B with trivial normal bundle in M called
the binding of the decomposition, and

e a smooth fiber bundle p : M \ B — S*.

We further require that B have a trivial tubular neighbourhood B x D on which
p is the projection to the angular coordinate of the D-factor. The fiber p~1(y)
is called the page of the open book decomposition.

The pages p~!(y) are codimension one submanifolds of M\ B without boundary,
and as on B x D, we have p(x,7e'?) = ¢, we see that

p )N (B x D) = {(x,re’?) |z € B,r € (0,1)}.

The closure of the page in M is thus a codimension one submanifold with bound-
ary B.

Remark 3.1.4. The fibration p : OB(F;%)\ B — S! constructed after Equa-
tion (3.1) defines an open book decomposition (B,p) on OB(F; ).

Remark 3.1.5. In principle, one can define both abstract open books (F, )
and open book decompositions (B, p) on a manifold M without any constraints
on dim(M) or dim(F'). For the contact geometric setting of this text, only the
following cases are relevant:

¢ manifolds M or OB(F;v) admitting open book decompositions are of
dimension 2n + 1;

e the pages F of abstract open books and the pages p~1(¢) of open book
decompositions have dimension 2n;

e the binding B has dimension 2n — 1.

49



3.1.1 From an Open Book to an Abstract Open Book

Given an abstract open book (F2", ), we have seen how the (2n + 1)-manifold
OB(F;1) defined in Equation (3.1) admits an open book decomposition with
binding B?"~! = i(9F x {0}) and fiber bundle p : OB(F;v)\ B — S'. Con-
versely, given an open book decomposition, we may recover the abstract open
book as follows:

Construction 3.1.6 ([Gei08, p. 150]). Let (B,p) be an open book decom-
position of M. Define F' as the intersection of any page, for example p~1(1),
with the complement of an open tubular neighbourhood B x Int(D2). Choose

a Riemannian metric on M and a vector field on M we shall call d, such that
e 0, is orthogonal to the pages;
o Dp[d,] = & € X(S'), where we denote the coordinate on S* by 6;
e 0, vanishes on B.

Letting t; be the flow of 0,, set 1) := to,. Then (F,) is an abstract open
book such that OB(F;) is diffeomorphic to M.

Before verifying the consistency of this procedure, note that this allows us to
speak of open book decompositions and abstract open books more or less inter-
changeably; the two concepts are not quite equivalent, however, as abstract open
books are merely defined up to diffeomorphism, whereas we can consider open
book decompositions up to isotopy. Moreover, we have defined abstract open
books for compact pages F, so that also the manifold OB(F';1)) is compact,
whereas we did not require this for manifolds on which open book decomposi-
tions can be defined.

Claim 3.1.7. Such a vector field 0, € X(M) exists.

Proof. We start by taking the coordinate vector field 0, on the tubular neigh-
bourhood B x (D\ {0}). Write D* for D\ {0}. 9, satisfies Dp[d,,] = Z. Note
that 0, is transverse to the pages: suppose it were not, then at some point,
0, would be tangent to a page and there would be a path in the page to that
point whose velocity vector is d,. But along this path, p is constant, and so
Dp[0,] = 0 at this point, which is a contradiction to Dp[0,] = %. Hence as 0, is
transverse to the pages, it defines a nonzero section of T(BxD*)/Tp~!(¢) =R,
and we may choose a metric which identifies this quotient with the orthogonal
complement of Tp~1(p). We may extend this metric to all of M by a partition
of unity argument in such a way that TM/Tp~t(p) = Tp~1(p)*t.

Outside of the tubular neighbourhood B x D, extending 0, by any smooth
section of T'(B x D*)/Tp~ () = R yields a vector field on M \ B orthogonal
to the pages.

To achieve that this extension satisfy Dp[d,] = %, we construct an extension
as follows. Let U C S! a domain for a bundle chart o : p~1(U) — F, where F
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denotes the abstract fiber. Recall that this means that (p,a) : p~*(U) - U x F
is a diffeomorphism. Fixing ¢ € F', define

sd: St M\B,  si(p)=(p,a) " (0q).

We have posZ(0) = 6, so the (s%),er form a smooth family of sections foliating
p~1(U); the fact that s is a section means that

o= Do s)O) ) = Dp(s2(0) DO ).

In view of this, for any x € p~1(U) there exists a unique ¢ € F and a unique
6 € U C S! such that = s (6), which leads us to define 9, on the set p~(U)
as

9] _
Opu(7) = Dsi(O) 55, wep (U).
As Dpl0,v] = 5, we may conclude as for 9, on the tubular neighbourhood

that 0, is transverse to the pages, and, if necessary, adjust the Riemannian
metric on this coordinate patch to ensure it is orthogonal. Now let U/ be a
cover of S' by bundle chart domains and let Ay, U € U, a partition of unity
subordinate to this cover. Set

8¢ = Z >\U6<p,U7

veu

which is still orthogonal to the pages and satisfies
Dp] Z)\UDp o] ZAU% 55"

Lastly, smoothly extend 0, to B by setting d,|p = 0. O

Claim 3.1.8. The map ¢ := o, where ¢, is the flow of 0,, is a diffeomor-
phism of F (recall that F is the intersection of p~'(p) with the complement of
Int(Dy1)) which is the identity near the boundary.

Proof. Compute for x € F

290 u(z) = Dol ()10, (4 (x))]

0
= ().

Hence p o ¢;(x) is an integral curve of 89, whence by uniqueness of integral
curves, p o ¥;(z) coincides with the integral curve of 5 starting at p(z), which
can be seen to be t — p(z) +t € St = R/27Z. Th1s is 2m-periodic, and thus
p(x) = p(ar(x)), so x and Yo, (x) lie in the same fiber.
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On the tubular neighbourhood B x D, the flow of d, is just ¥(z,re’?) =
(x,re**1)) which shows that on F'N B x Int(D), which is an open neighbour-
hood of OF in F, v is the identity. This also shows that ¢ maps F' to itself: we
already know 1 maps fibers to fibers, and that v is a diffeomorphism onto its
image, so now that we know that ¢ is the identity in the tubular neighbourhood
of B, we conclude that no z € F' can be mapped into the part of the tubular
neighbourhood with radial coordinate less than % This proves the claim. [

This establishes that (F,) is a valid abstract open book to consider.

Claim 3.1.9. Denote the fibration associated to OB(F;) by p’ and the binding
i(OF x {0}) by B'. Then there is a fiber bundle isomorphism

OB(F;y)\B' —— M\ B

2 lﬁ

g1 id g1
Moreover, OB(F;v) and M are diffeomorphic.

Proof. 1t is clear by construction that F' is diffeomorphic to the fibers of p,
so that OB(F;%) \ B’ and M \ B are fiberwise diffeomorphic. Denote this
diffeomorphism by n,. Then sending (z,¢) € | e Fp = OB(F;¢) \ B’ to
(ny(z), ) is the required fiber bundle isomorphism.

The fact that M and OB(F; ) are diffeomorphic now follows from the fact that
the boundaries of the pages in M and OB(F;v) are B and B’, respectively,
which are diffeomorphic since B = 9(p~1(p)) = OF = i(0F x {0}) = B'. O

Observe that this also proves independence (up to diffeomorphism) of all the
choices made in the construction of 0,: namely, any vector field with the re-
quired properties gives rise to an abstract open book (F, ) such that OB(F;¢) =2
M.

3.1.2 Examples

Let us give some concrete examples. An easy but useful example of an open
book decomposition is what we will refer to as the standard open book on

C:

Example 3.1.10. On C, there is an open book decomposition with binding
By = {0} and pg : C* — S given by po(z) = . Note that in polar coordinates,

po(re’¥) = . The pages

po () = {re’ | r >0}

are rays emanating from the origin.
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This allows us to think of open books as induced by certain fibrations:

Proposition 3.1.11 ([Tor09, Definition 4]). Let f : M — C be a smooth func-
tion with regular value 0 such that f is transverse to the pages of the standard
open book on C. Then setting B := f~1(0) and p := pgo f = f defines an
open book decomposition of M.

Open Book Decompositions of $3
Example 3.1.12. Consider the 3-sphere
§% ={(21,22) € C* | |1 + |22|* = 1}

1. Define f : S3 — C by f(z1, 22) = 2. Using Proposition 3.1.11, there is an
open book decomposition of S? induced by f with binding

B = {(0,22) S 53},
and the fibration is

p:S? \B— stcc
AL
B

Note that in polar coordinates, p(r1e?1, roe??2) =y € S; = R/27Z. The
pages are given by

pHp) = {(V1 - |22, 22) € 57},

which is diffeomorphic to an open unit 2-disk. An arbitrary tangent vector
to the pages is

(2’1, 22) —

87‘1 + TQarz + @284,02

Y :_7f7é

With the flat metric g = >, (dz;)?, the coordinate vector fields are or-
thogonal. In polar coordinates on C2, this is

g= dr?2 + r1d<p + dr + 7‘2d<p

Hence one sees that g(9,,,7) = 0 Thus 0, is a vector field orthogonal
to the pages, and Dp[0,,] = 8 Let us compute its flow. In polar
z)

coordinates, requiring 2, (z) = ( +(z)) translates to

d o 7“27;2
al/]t(z) = 7/71 —

Hence we must have ¢;(z) = (r1e!(*+#1) 2,). The time-27 map, our mon-
odromy, is hence the identity. This shows that (B,p) is an open book
decomposition of S? corresponding to the abstract open book (D?,id).

a7‘1 + 9013901 + T2a'r2 + @26@2 = acpl
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2. Consider a map f’ : S3 — C, given by f/(21,22) = 2122. By Proposi-
tion 3.1.11, we obtain an open book decomposition whose binding is

B = {(21,22) S Sg | 2129 = 0} = {(21,0) S SB} U {(0,22) c SS}

The summands K; = {(z1, 22) € S® | 2; = 0} for i = 1,2 are called Hopf
links. The fibration is

p:S*\B—=S'ccC
(217Z2) — ﬁa
|2122

which in polar coordinates reads
(r1e"?',ree'?) = 1 + @a.

The pages are given by
(p/)_l(%@) _ {(Tleigol, 1— r%ei(@ﬂm))}

for (r1,¢1) € (0,1) x S*, which is diffeomorphic to an annulus.

To find the monodromy of this open book, choose a smooth function § :
[0,1] — [0, 1] such that §(r) = 1 near r = 0 and 6(r) = O near r = 1. Then
define the flow
;1= o1 +6(r) -t
o2 o+ (1—6(r)) -t

Note that p’ ot (z) = p/(z) +t, implying that this flow is always transverse
to the pages. It also evidently maps pages to pages. Note also that

Ui(2) = 6(r1)0p, + (1= 6(r1)) e,

so that ¢} = 0,, near r; = 0. Hence we can take a suitable metric so that
this is always orthogonal to the pages, and consider 1) the monodromy
of the open book, which is just a right-handed Dehn twist.

3.2 Contact Structures on Open Books

In this section, we will examine how we can endow the manifold OB(F';)
with a contact structure following [Gei08, Section 7.3]. Originally, these results
are due to Giroux [Gir02] (see also the translation by Acu [Gir]), partially in
collaboration with Mohsen [GM]. . To do so, we require the pages to be Liouville
domains (W, d\), and the monodromy to be a symplectomorphism which is the
identity near OW. From now on, we will include the symplectic structure in the
notation for abstract open books, and denote them by (W, A; ).
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Theorem 3.2.1 (|[GM]). Let (W, A\;1)) be an abstract open book whose pages are
Liouville domains (W,d)\). Then OB(W ;%) admits a contact form. We write
OB(W, A\; ) for the resulting contact manifold.

In the proof, it will be convenient to consider a manifold diffeomorphic to
OB(W;) obtained from a generalized version of the mapping torus. Sup-
pose 1 : W — R, is a smooth function which is constant near 0W. Define the
generalized mapping torus as

Wy (@) = {(z,9) e W xR [ ¢ € [0,n(x)]}/ ~,
where we identify (z,n(x)) with (¢(x),0).

The manifold analogous to OB(W; ) obtained through the generalized map-
ping torus is
OB(W, A1) = Wy () LOW x D/ ~,

glued along the boundary by the identity, which is the manifold we are going to
endow with a contact structure. Note that W, () is diffeomorphic to the usual
mapping torus W(¢) (see [Gei08, Section 7]), and hence the glued manifold
using the generalized mapping torus is diffeomorphic to OB(W; ).

Before starting the proof, let us make this gluing more precise, and moreover
smooth. Suppose 1 takes the value ¢ > 0 near all boundary components. Then
we may identify the boundary of (W, (¢)) with

O(Wy () = OW x [0,¢]/(x, ¢) ~ (¥(x),0) = OW x S
for St = R/cZ.

This allows us to identify a collar neighbourhood of (W, (v)) with oW x
[—€,0] x S, for S' = R/cZ. Denote the coordinates in this neighbourhood

by (x,s,¢).

Take in turn a collar neighbourhood of (W x D(1 + ¢€)) (the slight extension
of the radius of the disk is negligible), which we may identify with

OW x A(1,1+¢).
Here, A(1,1+¢) := {z € C | |2] € [1,1+¢]}. Denote coordinates by (z, ™).
Define the gluing map
O :OW x A(1,1+¢) — OW x [—¢,0] x S*

COW xD(1+e€) CW, (W)

(z,7e®™0) —s (2,1 —r,ch),
so that as a smooth manifold,

OB(W, A;1b) = Wy (1) Ug (OW x D(1 + €)).

With this preparation, we can now prove Theorem 3.2.1.
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Step 1: Construction of a contact form on the mapping torus

First, we may assume by [Gei08, Lemma 7.3.4] that ¢ is an exact symplecto-
morphism. This means that
WA=\ =dn

for some function 7 defined up to a constant. By compactness of W, we may
assume 71 only takes positive values. Set

a:=\+dp € QYW x R).

Here, ¢ denotes the coordinate on R. As d\ is symplectic, « is contact. It is
also invariant under

¢ () = (w(l")ﬂﬂ - 77(1')) :

We have ¢*a = Y*A + ¢*dp = A+ dn + dp — dn = «, and thus « descends to
a contact form on the generalised mapping torus W, (1). Note that v is the
identity near the boundary, so 7 is locally constant near the boundary, hence
the generalized mapping torus makes sense to define.

As (W,d\) is a Liouville domain, we may assume there is a symplectic collar of
oW,
OW x [—€,0] = W, (z,s)— 9s(x),

where 9 denotes the flow of the Liouville vector field induced by A. A may
be expressed as e®i*\, where ¢ : OW — W denotes the inclusion. This collar
descends to the mapping torus:

JiOW x [—€,0] x S' = W, (),  (x,5,0) —~ [Js(z), 0]
Note that the S'-factor above is still considered as S = R/cZ.
On this collar, we may write « as j*a = e*i* A + dp.
Step 2: Extending o to OW x D
To define a contact form on OW x D, make the ansatz
§= f(r)i*A+ g(r)dp € QY (OW x D),

where f,g :[0,1+4 ¢] = R are smooth functions. We have to choose f and g
appropriately so that § becomes contact and coincides with « under the identi-
fications made by .

Let us start with compatibility with a. We have that
P*a = O*(e*i* N + dy) = ' 75\ + cdop.

Hence on the collar OW x A(1,1 + €), meaning for » > 1, we can phrase the
compatibility constraints on f and g as follows:
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1. f(r)=e'"" and g(r) = c for r > 1.
Near the centre of W x D, we prescribe the following form for ¢:

2. f(r) = Cy and g(r) = C17? for r < €/2, where Cyp > 1 and C; > 0 are
constants.

To ensure that the contact condition is satisfied, a straightforward computation
shows
SA(dO)" =nf" Y fg — flg)i* AA (di* X)L Adr A de.

Hence for 0 to be contact, we need that
3. (f(r),g(r)) is never parallel to its tangent vector (f'(r),¢'(r)) for r # 0.

For any such choice of functions f and g, we hence obtain a contact structure
on the glued manifold OB(W, \; ), finishing the proof. O

A manifold admitting an open book decomposition might already be endowed
with a contact structure. The following definition provides a notion of com-
patibility between contact forms and open book decompositions. Before stat-
ing it, let us fix the orientation conventions we use for open book decomposi-
tions.

Let M be an odd-dimensional oriented manifold with an open book decompo-
sition (B, p), where B also carries an orientation. Orient the pages p~!(¢) by
requiring that the induced orientation on the boundary of the closure of the
pages coincide with the orientation of B. This is equivalent to saying that a
basis of the tangent space of the pages is positive if and only if the basis together
with O0,, the vector field orthogonal to the pages and vanishing on B, gives a
positive basis of M.

Definition 3.2.2. A contact structure £ on M is said to be supported by the
open book decomposition (B, p) if there is positive contact form « for £ such
that

1. da restricted to the tangent space of the pages induces a symplectic form
on each page such that the orientation induced by da coincides with the
orientation of the page;

2. «a induces a positive contact structure on B.
Such a 1-form is called a Giroux form.

Remark 3.2.3. A more concise way of phrasing conditions 1. and 2. in the
above definition would be to say that for each page W, = p~*(y), the manifold
(W, da|rw, ) has to be a Liouville domain, respecting the orientation of W,,.

Lemma 3.2.4 ([Gei08, p. 348]). The contact structure constructed in Theo-
rem 3.2.1 is supported by the open book decomposition induced by (W, \; ).

Proof. Recall that the form defined in the theorem is defined by a = A + dy on
W, (1) and by fi* X+ gdp on OW x D. By restricting to the tangent space of a
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page, dy vanishes, and thus the pages are just (W, d\), which were assumed to
be Liouville domains. O

3.2.1 Uniqueness of OB(W, \; )

It is of course natural to ask if the above construction of the contact mani-
fold OB(W, X\;4) is well-defined. We address this question to establish well-
definedness up to contactomorphism, which also provides a strategy to prove
when two contact manifolds are contactomorphic. We will utilizes this technique
in the proof of Theorem 5.0.1. All these ideas are due to [Gir02].

Proposition 3.2.5. Let M?"t! be a closed oriented manifold and &; = ker a; be
two positive contact structures supported by the same open book decomposition
(B,p) of M. Then & and & are isotopic.

Proof. Let (W, ;) denote the abstract page of the open book decomposition,
where we set \; = «;|rw. Recall that OW = B and take a small tubular
neighbourhood B x D.. Let h : [0,¢] — R be a function with

e h(0) =0, A/(r) > 0 near r = 0;
o h=1forr>e¢/2.

Consider h as a function with domain B x D, and set for any R > 0
o, r = a; + Rh(r)de.
A short computation shows that

i rA(doi )™ = a; A(doy)™ + Rh(r)dp A(doy)™ 4+ RE (r)a; A(dog)™ ™ Adr Adp.

(3.2)
The first term is positive since the «; are contact forms. The second term is
nonnegative as day; is symplectic on the pages inducing the given orientation,
which means by definition that any positive basis of the tangent space of a
page together with 0, is a positive basis of the tangent space of M. Hence,
dp A (da;)™ is a positive volume form.

For the third term, let € be small enough so that the intersection of the tubular
neighbourhood B x D, with any page is contained within a symplectic collar
of the pages. It does not matter whether we choose the Liouville vector field
associated to oy or aws for the construction of the symplectic collar, as long as
the flow preserves the orientation (which is clear as Ly (w) = w for any Liouville
vector field).

Suppose for concreteness that we evaluate a; A (da;)™ ™1 A dr A dyp at a point
x € B x D, C M such that p(xz) = ¢g. By assumption on ¢, we may identify

(BxD.N W%,dai\TWwo) ~ (B x [—¢,0],d(e'\y)).
Recall that as the «; are Giroux forms, the A\; are contact structures when

restricted to B. Assume that x = (po,to), which corresponds to ¢y, (z) if ¢
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denotes the flow of the Liouville vector field used to construct the symplectic
collar. Note that ¢t € [—e¢, 0].

Now choose a positive basis (u1,...,us,—1) of T}, B and transport it to T, W,
by setting

vj = Dy, (po)[u;]-
As ), is an orientation-preserving diffeomorphism of W, and by the orientation

conventions in Definition 3.2.2, (%,vl, ...,V2p—1) is a positive basis of T, W,

(% is outward-pointing on 0W). Note that under the identification with the

symplectic collar, we may express

0
Vj = Uj +t0§|to~

Our preliminary goal is to show that a; A (da;)" 1 A dr|TW¢0 is a volume form
on W, N B x D.. On the symplectic collar, we have

a; N\ (dai)”_l = (e'\) A (d(et)\i))”_l
= e\ A (efdt AN+ etdr) !
= et A (e("_l)t(d/\i)”_l + (n— 1)e™ Dt A A A (d)\i)"‘Q)
= ™M\ A (d\)" L

Evaluating o; A (da;)" " Adr|rw,, at the positive basis (%, Viy...,Uop_1) gives

0
7d7”(a) . e”t")\i A (d)\l-)"fl(ul, e ,UQn_l).

The second factor is positive as the \; are positive contact forms on B and the
u; are a positive basis. Also, dr(%) < 0 for € small enough as r is decreasing
along flow lines of the Liouville vector field in a neighbourhood of the binding,
which proves that o; A (da;)" = Adr > 0 in a neighbourhood of B (though not
on B itself, as there, dr is not defined).

Finally, dp(9,) > 0, so that

a; A (doy)" Y Adr Adp(vr, ... V91, %, J,) >0,

which establishes that also the third term is nonnegative. The last two terms
in Equation (3.2) may vanish due to being multiplied by h or A/, but the first
is always positive. As we have shown that all terms evaluate to something
nonnegative or positive on positively oriented bases, this establishes that both
o, r are positive contact forms inducing the same contact structure as «;.

We now obtain an isotopy between &y and &; by the convex combination
a; = (1 =t)ag,g + ton R,

which is contact for all ¢ € [0,1] if R is large enough. O
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As promised, we obtain that the contact structure on OB(W, ;1) does not
depend on the choices made in the construction:

Corollary 3.2.6. The contact manifold OB(W, ;1) is well-defined up to con-
tactomorphism.

Proof. The base manifold is always diffeomorphic to OB(W;), and if £ and
&1 are two contact structures on OB(W;4) arising through different choices
regarding f and g in the construction in Theorem 3.2.1, then by Lemma 3.2.4,
both are supported by the open book decomposition induced by the abstract
open book (W, A;¢) on OB(W ;). Thus we conclude immediately by the pre-
ceding proposition. O

Perhaps more interestingly, this provides a technique to prove that two contact
manifolds are contactomorphic.

Corollary 3.2.7. If two contact manifolds (Moy,&) and (M7,£&1) admit sup-
porting open book decompositions so that their respective abstract pages are
symplectomorphic to the Liouville domain (W, \) and their monodromies are
symplectically isotopic to v, then (Mo, &) and (My,£&1) are contactomorphic.

Proof. From the assumptions and the uniqueness proposition, it follows imme-
diately that
(M07 50) = OB(W7 )‘7 w) = (M17 gl)a

where = denotes contactomorphism. O

Remark 3.2.8. In dimension 3, the interplay between open book decompo-
sitions of contact manifolds and their contact structures can be made more
precise, which is the content of the celebrated Giroux Correspondence Theorem
[Gir02]:

Theorem 3.2.9 (Giroux). Let M be a closed oriented 3-manifold. Then there
is a one-to-one correspondence between

{oriented contact structures on M up to isotopy }

and
{open book decompositions of M up to positive stabilization}.

The equivalence relation of positive stabilization of open books is defined by
adding a 1-handle to the page and composing the monodromy with a right-
handed Dehn twist along a closed simple embedded curve going exactly once
around the handle.
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3.2.2 Examples

Returning to the examples of S? we encountered earlier, we check if the standard
contact structure on S* defined by

o= r%dgpl + r%dch
is supported by the open book decompositions considered in Section 3.1.2.

Example 3.2.10.

1. We first treated B = {(0,22) € S3} together with p(z1,29) = o7 and
found the corresponding abstract open book to be (D?,1) = id).
On B, a restricts to dys, which is the standard contact form on S! again.
On the pages, da = r1dry A dpy + rodra A dips restricts to rodre A dpo, as
(1 is constant on the pages. This is a symplectic form, which shows that

the the standard contact structure ker « is supported by the open book
decomposition (B, p).

2. For the other binding
B’ = {(21,0) € S*} U {(0, z3) € S°},

we see that on K; C B, the standard contact form « restricts to dy;, once
more the standard contact form on S'. Using the parametrisation of the

pages

W70 = { (et 1= eteeny |

for (r1,¢1) € (0,1) x S*, we get

do = ridry Adpy + \/1 - T’%d(\/l —17) Nd(p — p1) = 2ridry Adpr.

This is symplectic and hence (p’, B) also supports ker «.

3.3 Symplectic Fillings by Lefschetz-Bott Fibra-
tions

This section explains how to obtain symplectic fillings from Lefschetz-Bott fibra-
tions using open books. We use this technique in Section 5.5 to exhibit different
symplectic fillings of the Ag-type singularity.

Recall from the beginning of this chapter that a topological Lefschetz-Bott fi-
bration (E,m, J, j) with regular fiber F' over D admits a topological description
of its total space as

OF = F(¢) U6F><Sl (8F X ]D)
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This suggests an identification of OF with the abstract open book (F, 1), though
one has to be careful about the fact F has a corner. On the other hand, the man-
ifold OB(F';%) is constructed with a gluing as discussed after Theorem 3.2.1,
so that OB(F;) is closed.

Suppose the corner can be smoothed. We may then identify the resulting man-
ifold E' with OB(F;+) induced from the abstract open book (F,). We have
seen in Theorem 3.2.1 that OB(F;1)) admits a contact structure if we further
endow the page F' with a 1-form A making (F,d\) into a Liouville domain; recall
that we denoted the resulting contact manifold by OB(F, X; ¢).

It is then natural to attempt to expand this to the symplectic setting and ask
if there is a notion of compatibility between the symplectic structure of the
Lefschetz-Bott fibration and the contact structure on the boundary. In particu-
lar, one may be interested in the possibility that (E, Q) could, after smoothing
corners, serve as a strong symplectic filling of a contact open book associated
to OF.

A strong symplectic filling (W,w = d\) of a contact manifold (M, «) must
satisfy that w is symplectic (evidently), and that w is exact near the boundary
with outward pointing Liouville vector field V. For a symplectic Lefschetz-Bott
fibration (E,, ) over D, let us hence require that

(1) € is symplectic on all of E, and

(2) ©Q = d\ is exact near OF, and both A|g, g and A
forms.

8, E are positive contact

It turns out that one can “interpolate between” the Liouville vector fields as-
sociated to Mg, and Mg, g (which are outward pointing along 9, E and 0,E
as they are assumed to be positively contact) to obtain another Liouville vec-
tor field V' which is transverse to the boundary of a manifold E’ obtained by
smoothing the corners of E (cf. [LHW18, Section 2.5]).

Thus if (1) and (2) hold, (E’, Q) is a strong symplectic filling of (9E’, ker A).

To obtain a contact open book description of JF’, we require that (F;1)) can
be made into a Liouville domain. This suggests that we should impose

(3) (771(2) \ B, Q|-1(,)) is a Liouville domain for all z € D.

Denote a regular reference fiber by (F,d\) = (7~ (1), Q| -1¢1)). If (E, m, Q) sat-
isfies (1)-(3), Theorem 3.2.1 together with Lemma 3.2.4 give that A is a Giroux
form for the open book decomposition of the contact manifold OB(F, A; ¢)).

Therefore, to establish that a symplectic Lefschetz-Bott fibration (E,7,Q) as
above induces a strong symplectic filling of the contact manifold OB(F, \;v),
one needs to verify that

(E', ker )\) is contactomorphic to OB(F, \;).
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This is shown in [Oba20, Proposition B.3], which also reviews the smoothing of
the corners of E.

Let us state this as a proposition.

Proposition 3.3.1 ([LHWI18, Section 2.5], [Oba20, Proposition B.3|). Let
(E,m, ) be a symplectic Lefschetz-Bott fibration over D with monodromy 1
and generic fiber the Liouwville domain (F,d)\) = (771 (2) \ B, Q| -1(,)). Sup-
pose ) is nondegenerate on E and exact near OF and on each regular fiber of
.

Then Q can be deformed and the corners of E can be smoothed so that (E,Q)
is a strong symplectic filling of the contact manifold OB(F, \; 1))

This proposition allows us in certain cases to read off fillability of a contact
manifold.

Corollary 3.3.2 ([Oba20, Corollary B.4]). Suppose a contact manifold (M, &)
1s supported by an open book decomposition with pages symplectomorphic to the
Liouville domain (V,w = dX\) and monodromy ¢ € Symp(V,w). Suppose that )
is symplectically isotopic to the composition of right-handed fibered Dehn twists

YW=ETo,0...0TC,

for Cq,...,Ck a collection of spherically fibered coisotropic submanifolds. Then
(M, &) is strongly fillable.

Remark 3.3.3. Recall that the total space of a Lefschetz fibration 7 : E?" — D
admits a handlebody decomposition with no handles of index greater than n.
If F satisfies (1), then in particular, there exists a global symplectic form € €
Q2%(E). Therefore, one can choose a compatible almost complex structure .J on
FE and we are in position to apply Theorem 1.4.22 to conclude that there exists
a Stein structure on E. In particular, any strong symplectic filling induced by
a Lefschetz fibration is in fact a Stein filling.

Remark 3.3.4. [LHW18] is an extensive reference for results of this type for
Lefschetz fibrations on 4-manifolds, see in particular theorem 1.24. It is shown
that for topological Lefschetz fibrations (E,7), the space of symplectic forms
Q) € Q%(F) making (E, 7, Q) into a symplectic Lefschetz fibration satisfying (1)-
(3) are nonempty and contractible, and that picking any such form, the corners
of E can be smoothed so that (F,(Q) is a strong symplectic filling of a contact
manifold supported by the induced open book decomposition of the boundary.

If moreover the Lefschetz fibration is allowable, which means that none of its
vanishing cycles is homologically trivial in the fiber, then the same is true for
the following spaces:

e the space of symplectic forms on E giving 7 the structure of an exact
symplectic Lefschetz fibration, thereby inducing a Liouville filling;
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e the space of almost Stein structures (J, ¢), which consist of an almost
complex structure J and a J-convex function ¢ so that —dd®¢ restricts to
a contact form on the faces of OF. It is explained how this gives rise to a
veritable Stein structure on E after smoothing corners, producing a Stein
filling.

Conversely, Giroux and Pardon proved in [GP17] that every Stein domain W
admits a Lefschetz fibration (W', 7) whose fibers are Stein domains and so
that W’ can be deformed to W. This proves that any Stein domain admits a
Lefschetz fibration, and that the total space of any Lefschetz fibration can be
deformed to a Stein domain.

Remark 3.3.5. Note in particular that this result implies that any manifold
which arises as the boundary of the total space of a Lefschetz fibration (with
smoothed corners) admits a Stein fillable contact structure.
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Chapter 4

Lefschetz-Bott Fibrations on
Line Bundles

The aim of this chapter is to prove the following;:

Theorem 4.0.1 ([Oba20, Theorem 1.1]). Let (M,w) be a closed symplectic
manifold. Suppose that [w/27) € H?(M;R) has an integral lift Poincaré dual to
the homology class of a symplectic hypersurface H in (M,w). Then there exists
a complez line bundle L over (M,w) with first Chern class ¢1(L) = —[w/27]
which admits a symplectic Lefschetz-Bott fibration over C with fibers M\ H and
critical set H.

Let us first recall the notion of Chern classes. Suppose 7 : L — M is a complex
vector bundle of rank k. Then the r-th Chern class ¢,(L) is a cohomology
class in H?"(M;Z). Their significance in the case of complex line bundles lies
in the fact that the first Chern class ¢;(L) € H?(M;Z) turns out to be a
complete invariant: complex line bundles over a manifold M are classified up to
isomorphism by ¢;(L) (see e.g. [Hus94, Theorem 3.4]).

We refer to the classical textbook [MS74] for the general theory of characteristic
classes, in particular to Chapter 14 for the theory on Chern classes, and to
Appendix C for their relation to Chern-Weil theory. For our purposes, we
content ourselves by giving a way to define the first Chern class: suppose p :
L — M is a complex line bundle over a manifold M. Choose a connection form
a € QY(L). The curvature form associated to « is a 2-form 8 € Q%(M) on the
base satisfying p*8 = da. Then in our convention, the first Chern class of the
bundle L is
er(L) = [B/2n).

The assumptions on w and H are motivated by an important result of Donald-
son:
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Theorem 4.0.2 (|[Don96|). Let (M,w) be an integral closed symplectic mani-
fold. Then there exists a sufficiently large integer k > 0 such that [kw/27] is
Poincaré dual to the orientation class of a symplectic hypersurface H in M.

The hypersurface H is called a Donaldson hypersurface, and in the following
we normalize the symplectic form in order to assume k = 1.

Hypersurfaces of this type are also known as symplectic divisors, and a tuple
(M,w, H) consisting of an integral symplectic manifold (M, w) together with a
Donaldson hypersurface H is referred to as a polarized manifold. In [BCO1],
Biran and Cieliebak studied properties of polarized manifolds and provided nu-
merous examples to which Theorem 4.0.1 could potentially be applied. One
easy consequence from the definition is that polarized manifolds are exact away
from the Donaldson hypersurface H.

Lemma 4.0.3. Let (M,w, H) be a polarized symplectic manifold. Then w is

exact away from H.

Proof. Set X = M \ H and denote the inclusion by i : H < M. We show
that [i*w/27] = 0 € H?*(X;R) = Hom(Hs(X;Z);R), which by the de Rham
isomorphism amounts to showing that for any 2-cycle ¢ € Co(X;Z), we have

/ *w/2m = 0.

Indeed, because [w/27] is Poincaré dual to [H], we have

/ci*w/27r - /) w/2m = /) PD[H] =ix]c|- [H] =0

since ¢ and H are disjoint. O

The construction of the line bundle L and the Lefschetz-Bott fibration associ-
ated to a Donaldson hypersurface H C (M, w) will proceed along the following
program:

Outline

1. Building a local model: construct an associated S'-bundle over H with a
symplectic form (Section 4.1).

2. Construct a neighbourhood v(H) of H which can be symplectically iden-
tified with the previous associated bundle, so that M = v(H) UV, where
V is the complement of v(H) (Section 4.2).

3. Define complex line bundles over V and v(H) as an associated bundle to
a suitable S'-action on C and endow their total spaces with symplectic
forms (Section 4.3); symplectically glue them to a line bundle L over M
(Section 4.4).
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4. Define a tentative Lefschetz-Bott fibration 7 : L — C whose critical sub-
manifold is the zero section of H (Section 4.5).

5. Deform the symplectic structure on L such that the fibers carry a standard
symplectic structure (Section 4.6).

6. Construct an almost complex structure J on L such that the symplectic
structure is normally Kahler near the zero section of H in L (Section 4.7).

7. Show that all the data constructed above define a symplectic Lefschetz-
Bott fibration (also Section 4.7).

4.1 The Local Model

We will model a neighbourhood of the Donaldson hypersurface H C M on a
bundle associated to a special principal S*-bundle, which we now define.

Definition 4.1.1. Let (M,w) be a closed symplectic manifold. The Boothby-
Wang bundle p : (P,a) — (M,w) over (M,w) is a principal S'-bundle with
connection 1-form o € Q'(P;s!) such that da = p*w, and such that a is a
contact form.

Remark 4.1.2. As s' 2 R, we view « as an ordinary 1-form on P with values
in R.

Definition 4.1.3. Suppose w is integral, then in our convention, [w/27]| €
H?(M;R) lies in the image of the map H?(M;Z) — H?(M;R) induced by the
inclusion Z — R.

We call a preimage of [w/27] in H?(M;Z) an integral lift of w.

A symplectic manifold (M, w) whose symplectic form w is integral is referred to
as an integral symplectic manifold.

Fixing an integral lift of an integral symplectic form, the Boothby-Wang bundle
over (M,w) exists and is unique up to isomorphism (see [BW58]).

Proposition 4.1.4 (Properties of the Boothby-Wang bundle). Let p : (P, a) —
(M,w) be the Boothby-Wang bundle over (M,w) and write

§s(p) = ;| exp(ts)-p, peP,

for the infinitesimal generator associated to the S'-action on P. Then & = R,
is the Reeb vector field of o, and all its orbits are periodic.

Proof. Since « is a connection form, 1, = s for all s € s', s0 1,0 = 1. Note
that as the action is fiber-preserving, we have Dp(x)[¢s(p)] = 0 for any s € s'
and x € P, so that

te, (da) = 1, (p*w) = 0.
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The flow of &; is ¢i(z) = exp(t) - z, which is evidently 2m-periodic as exp(t) is
the element e’ € S1. O

The relevant associated bundles are obtained from two actions of S' on C.
Consider the group homomorphisms p,p : S* — S! given by

p(g) _ 6277@’0’ /—)(9) _ 67271'@’0.

These define S'-actions on C via 6 - 2z := p(#)z, and similarly for p. As S! also
acts on P, consider the right action on the product P x C given in the standard
way by
(p,2) 0:=(p-0,07"-2).
The associated bundle P x, C is thus P x C divided by the action
(p,z)-0=(p-0,e”2™%),
and P x5 Cis P x C divided by the action

(p.2)-0=(p-0,e*%).

Lemma 4.1.5 (JOba20, Section 2.1]). Define the forms w!,,ws € Q*(P x C) by
wl, = p*w + d(r2df) + d(r’*a) = d((1 + %) (a + db));

wh = p*w 4 d(r?df) — d(r*a) = d((1 — r*)(a — df)).
The coordinates (r,0) denote polar coordinates on C. Their kernels are given by
, 0
ker(Wa) p,2) = (Ra = 55),2)

0
ker(w/a)(p,z) = (Ra + %)(p,z)

for all (p,z) € PxC, that is, it is spanned by the generator of the corresponding
St-action. Hence w!, and wL descend to symplectic forms

wa € (P x,C),  wae (P x,D).

Remark 4.1.6. We may define a zero section not only for vector bundles, but
for any fiber bundle with groups as fibers by sending elements in the base to
the identity element in their fiber.

Remark 4.1.7. Away from the zero section, wg is exact with primitive
Aa = (1 =1 (a—db).
The local model for our neighbourhood of H in M will be the symplectic man-

ifold )
(P Xﬁ ]D), Wa),

where P is now the Boothby-Wang bundle over the Donaldson hypersurface
H.
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4.2 The Neighbourhood of H

Here we construct a neighbourhood of a symplectic hypersurface H modelled
on the associated bundle Py x ;D constructed above. Let (M, w) be an integral
symplectic manifold with a Donaldson hypersurface H C M, and denote by
i : H — M the inclusion. Set wy := i*w and denote by

p: (Pa) = (H,wn)

the Boothby-Wang bundle over (H,wpr). The construction in the previous sub-
section gives rise to a bundle

Pxp]f))%H

whose total space carries a symplectic form wg which is exact away from the
zero section ig(H) with primitive A\z. The following proposition allows us to
think of a tubular neighbourhood of H as a convex neighbourhood of the zero
section in P xpﬁ. Recall from Lemma 4.0.3 that w is exact away from H.

Proposition 4.2.1 ([DL19, Lemma 2.2]). Let H be a symplectic hypersurface of
an integral symplectic manifold (M,w) with PD[H]| = [w/2x]. Then there exists
some § € (0,1), a primitive A\ € QY (M \ H) of w, and a symplectic embedding v
such that

(P x5 D(d),wg) —— (M,w)

H
commutes, and moreover v\ = \g.

The proof relies on the Weinstein tubular neighbourhood theorem combined
with [DL19, Lemma 2.2] by Diogo and Lisi.

The desired neighbourhood is now given by
v (H) :=v(P x;D(9)).

Also set
V.i=M\vy(H),

so that M = vy (H)U M. Note that V Ny (H) = Ovp (H).
4.3 Line Bundles over the Decomposed Manifold

We build a complex line bundle over both V' and vj;(H) and endow their total
spaces with a symplectic form. Let us begin with the bundle over V.



The Bundle over V

Denote by py : V x 8! — V the projection to V and let S* act on V x S!
by
(1'791) 0= (xvol + 0)7

where 6; is the coordinate on S'. We may regard py as a principal S'-bundle.
Letting S* act on C via p, consider the associated bundle

(VxSHx,C—V.

To construct a symplectic form on the total space, endow py with a connection
form

ay = A+ dby.

This is indeed a connection form: the infinitesimal generator is given by &, =
sa%l, and thus ay (&) = s for all s € s' = R. Moreover, ay is evidently
invariant under the action.

Let (rg,0;) denote coordinates on C and define a form in Q2((V x S1) x C)
by
P (dX) + d(r3dfy) + d(r2av) = d((1 + 73)(\ + dby + dby)).

This is S'-invariant and hence descends to a symplectic form w,, € Q?((V x
SH %, C).

In fact, this bundle is symplectomorphic to the trivial bundle [Ty, : V x C — V
equipped with the symplectic form

Oy =d((1+7r2)(A+db)),

which is the bundle over V we are interested in. The symplectomorphism is
given by

Uy (VxSH)x,C—VxC
[117,91, (7’2,92)] = (1‘7 (T2791 +62))

The Bundle over vy (H)

As for the bundle over vy (H) = P x;ID(§), consider the quotient projection
py i P xD(0) — P x; D(5). This is a principal S*-bundle, and
a, = (1 —rHa+r2dh,

is well-defined and a connection form: the infinitesimal generator is &, + 36%1
for ¢ the infinitesimal generator of the S!-action on P, so that

a, (& — s%) =(1-rHs+ris=s.
1

Invariance under the action follows similarly from the fact that o and df are
connection forms on P and S*, respectively.
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To obtain a bundle over vy, (H), we compose with v so that
vop,: P xD() — vy (H)

is a principal S'-bundle with the same connection form. To make this into a
complex line bundle, set

I, : (P xD(6)) x, C— var(H)
[($7 (7‘1, 91)7 (’1"2, 92))] = V([xv (711701)})'

The form on P x D(d) x C defined by
dov, + d(r3dfs) + d(ric,) = d((1 +73) (v, + dfy))

descends to a symplectic form w,, € Q?((P x D(4)) x, C).

4.4 Gluing to a Bundle over M

We now show that the bundles IIy, and II, glue together symplectically to a
bundle over M =V Uwvyp(H). The first step is to slightly modify our definition
of vy(H) and V in such a way that they overlap in an open set on which
we can define a collar neighbourhood. On this collar, we will define a gluing
symplectomorphism.

The modification of vp;(H) consists in slightly shrinking § and taking some
§’ > & such that the tubular neighbourhood

var(H) = v(P x; D(8))

is contained in v(P x;D(¢")). Note that shrinking ¢ shrinks the tubular neigh-
bourhood vy (H) and thus enlarges its complement V. We may view the overlap
of v(P x;D(6)) and v(P x5 D(4")), which is

vy (V) == v(P x5 A(6,0")) — (M,w),

as a symplectically embedded annulus bundle, where A(4,0") = {z € C | |z| €
[6,6']}. Note that the image does in fact lie in V, and that v(P x; S1(8)) =
OV’; hence we may view vy (V) as our desired collar neighbourhood of V in
V.

Lemma 4.4.1. The gluing map defined by

B : (P xA®6,8)) x, C = 1y (dV) x C (4.1)
[, (11,01), (r2,02)] = (v([z, (11,01)]), (r2, 61 + 02)). (4.2)

18 a symplectomorphism.
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Proof. Recall that the symplectic form on vy (V) x C C V x C is
Qv =d((1+r*)(A+db)),
and that w,, € Q?((P x D(¢)) x, C) is the reduction of
d((1472)(a, +dby)) € Q2(P x D(&) x C),
2

where o, = (1 — r?)a + r2df; and « is the connection-contact form on P.

Further recall from Proposition 4.2.1 that the embedding v : P x; D(8’) —
(M, w) satisfies v*\ = (1 — 7?)(a — df). Combining this with

Qr =1y, "0 = 01 + 02,
a direct computation shows that
" (1472 (A +df)) = (14 &*2)(B*\ + dd*6))
= (1 +r5)((1 = r})(a — dby) + dby + dbz))
= ((1+ ) (1 —ra +riddy — doy + by + db))
= ((1+73)(cw +dby)) .

As the domain of ® does not contain (the zero section of) H, the symplectic
forms are exact on the entire domain and target, so this argument suffices to
establish that ® is a symplectomorphism O

We may hence consider the glued bundle
II:VxCUg (PxD()) x,C—VUvy(H)=M,
defined by
(z, (r,0)) = Iy (z,(r,0)) =«
on V x C, and by
([z, (r1,601), (r2,02)]) = IL([z, (r1,61), (r2,02)]) = v([z, (r1,61)])
n (P x D(d’)) x, C. Denote this bundle by IT: L — M.

Let us determine the Chern class c¢;(L). Note that due to the correspondence
of rank-k complex vector bundles and principal U(k)-bundles, the Chern class
of an associated bundle P x, C is given by the Chern class of the associated
bundle P.

We will thus show that the curvature forms associated to the connection forms
chosen on the bundles over V and v, (H) are given by w|y and w|,,, respectively,
which implies that the Chern class is ¢; (L) = [~w/27].

Recall that the bundle over V was defined as (V x S1) x, C, where we endowed
V x S! with the connection form ay = A + df;. Then we have

day = d\ = plw,
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so that w|y is indeed the curvature form of the bundle over V.

As for the bundle over vy (H), the connection form on vop, : P x D(¢') —
vy (H) was chosen to be

a, = (1 —rda+rido.

Then doy, = d((1 — r?)(a — db1)), which coincides with pfwz. On the other
hand, we have
v¥w = wg

by Proposition 4.2.1, so that (v o p,)*w = dawv, establishing that the curvature
form of o, is wl,,,, (#r)-

4.5 A Fibration on the Line Bundle

Here we define what will be a Lefschetz-Bott fibration on the space L we con-
structed above. Following the notation in [Oba20], abbreviate P(D(¢'),C) :=
(P xD(8")) x, C. We define the fibration separately over each piece of L =
V x CUg P(D(4"),C) as follows:

my: VxC—C, (z,(r,0)) — (r,0),
and
Ty - P(D(§/), C) - (C7 [ﬂ?, (Tla 01)7 (T2792)] — (/1,(7‘1)7”2,91 + 02)

Here, i : R — R is a smooth function with

o u(r) =rfor r <e where 0 < € < J;

e u(r)=1forr > o,

e 1/ (r) >0 for all r.
Lemma 4.5.1. The map 7w := 7y Um, : M — C defined by 7y on V and m,
on vy (H) is well-defined.
Proof. We first show that the map =, is well-defined, and then that 7 respects
the gluing by ®.

The map 7, is well-defined since S! acts on D(¢’) via p and on C via p:

7 ([(, (r1,61), (r2,62)) - 0]) = 7 ([ -p 6. (r1,61) 5 07", (r2,62) -, 67"))
= 7'(,/([1' p 9, (7‘1, 01 + 9), (r27 Oy — 9)])
= (M(rl)rgﬁl +02)

= m,([z, (r1,61), (r2, 02)]).
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To show that 7w := 7y Um, : L — C is well-defined, we need to verify that for
[(z, (r1,61), (r2,02))] € (P x A(6,0")) x, C, we have

!

T ([(@, (r1,601), (r2, 62))]) = 7v (@([(2, (1, 61), (72, 62))])) -

So we compute the right hand side, which is

v (@([(w, (r1,01), (r2,02))])) = mv (v(, (r1,601)), (r2, 61 + 62))
= (7”2,91 + 92)

Since (r1,01) € A(6,0"), we have p(r;) = 1, which means 7 is well-defined. O

Note that we may write m on P(D(¢"),C) as

(1))

w(lo 21, 2) = 5 (4.3)

and that near Hy, specifically for |z1| < €, we have

7([x, 21, 22]) = 2z129.

Proposition 4.5.2 ([Oba20, Section 3.3]). The critical point set of 7 is
Ho = {[z,21,22) € P(D("),C) | 21 = 22 = 0}.

Proof. We have
ATy 2 2] = W (r1)r2dry + p(r1)dry + dfy + dfa

on P(DD(¢"),C), which vanishes precisely for 71 = r5 = 0. On V x C, there are
no critical points. O

Remark 4.5.3. The critical manifold Hy can be seen as the zero section of the
bundle
P(D(8'),C) — H;

Indeed, the zero section of P x D(¢") — H is just {(1,,0) € P xD(¢") |y € H},
where 1, denotes the neutral element of the fiber P, = S'. By definition of
principal bundles, the fibers of P are precisely the orbits of the action by S?,
so that (1,,0) and (x,0) are in the same orbit for all # € P,, which means that
when passing to the associated bundle, the zero section is Hy, as claimed.

Note that 7(Hp) = 0 € C, so that 0 is the only critical value of =.
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4.6 Deformation of the Symplectic Structure

Recall once more that the symplectic structure w,, € Q?(P(D(5),C)) is the
reduction of

day, 4+ d(r3dfs) + d(r3en) = d (1 +17)(ew + db)) € Q*(P x D(8') x C),

where a, = (1 — r?)a + r?df;. For € as in the definition of the function u we
used to define the fibration 7 before Lemma 4.5.1, define a neighbourhood of
the critical locus

ve(Hp) == {[z, 21, 22] € P(D(8),C) | |21]* + |22|> < €} € P(D(&'),C).

Recall that for a symplectic Lefschetz-Bott fibration, we require the fibers to
be symplectic, and for a neighbourhood of the critical locus to be foliated by
slices on which there is a complex structure which is Kdhler for the symplectic
structure. This is the neighbourhood on which we are going to exhibit such a
complex structure.

Considering the restricted bundle v.(Hy) — H, the fibers may be regarded as
D(¢") x D(e), on which the standard symplectic structure is

wo = ridry A dfy + radrg A dbs.

Observe, however, that w,, restricted to the fibers lifts to a different structure.
We now deform the symplectic structure near the critical locus to attain the
standard symplectic form on the fibers.

Lemma 4.6.1 ([Oba20, Lemma 3.5]). There exists a symplectic form Q, €
Q%(P(D(8"),C)) with the following properties:

o O, coincides with w,, outside of v,(Hy) for some e <n < 1;

e O, restricts to twice the standard symplectic form on the fibers in v.(Hp).
Moreover, there exists a symplectomorphism between (P(D(d'), C), Q) and (P(D(¢'),C),wa, )
supported in v, (Hy).
Proof. Construction of (,

To construct €2, pick a smooth function v : R — R and some 0 < ¢, ¢” with
e <€ <€ <1 sothat

e u(s)=0for s <¢;
o u(s)=1for s > €
e u/(s) >0 for all s.

Now set f(ry,72) = u(r? +r3) for (ry,m2) € [0,48") x [0,00), and the 2-form

Q= d((1+r3)(dbz + @) + d((L+ f(r1,r2)r3)ri (61 — a)).
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The form is S'-invariant and hence descends to a 2-form ,, € Q?(P(D(¢), C)).

Outside of v (Hy), we have f(r? +r3) =1, so that in this region, we have

Q, = d((1+7r2)(dby + @) + d((1 + r2r2)(db; — a)).

A quick computation shows that this is agrees with w,, .

Nondegeneracy of 2,

We now prove that €2, is a symplectic form and find a symplectomorphism
(P(D(8), C), wa, ) = (P(D(80),C), <)

For nondegeneracy, note first that dim(M) = 2n, dim(H) = 2n — 2, and hence

dim(P) = 2n — 1. Since of course dim(S*) = 1, this implies dim(P(D(4"),C)) =
2n 4 2. One can now compute

QUL = C(ry, ro)dr? A (dOy — o) Adr2 A (dO + a) A (da)™

for C(r1,m2) = n(n+1)(1—ri+r3(1— fr#)" 1 (r#rdu’ + fri+1). This function
is strictly positive, and the wedge product of forms following it is a volume form
(recall that « is contact).

We will obtain a symplectomorphism by applying the Moser trick. We have
that

o = O = (3 (dBy — 0)(1 = F(r1,r2))),

which is exact. Thus w,, and 2, are cohomologous, as well as the convex
combinations w; := (1 — t)wy, + t€Q, for t € [0,1]. Therefore, by Moser’s
argument, there exists an isotopy ¢; of P(D(8"), C) with ¢jw; = wy = wa,, -

Let us repeat Moser’s argument in this case to show that the symplectomorphism
is supported in v (Hp). Since the w; are cohomologous, we may find a smoothly
varying family of 1-forms (; so that w; = —df;. Recall that the isotopy ¢; is
the flow of the time-dependent vector field V; defined by

wy,wt = Br.

This flow satisfies

d * * . *
= (Lyv,wi + i) = ¢y (dry,wi — dpy) = 0,

which proves that ¢, is the desired isotopy.

Outside of v+ (Hp), we have remarked that w,, — Q, = 0, so that also 3; = 0.
Thus we have uy,w; = 0, which by nondegeneracy implies V; = 0 outside of
Ve (Hp). The flow ¢, is hence the identity in this region, proving the claim.
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Restriction to the fibers

The last claim to verify is that 2, restricts to twice the standard symplectic
form on the fibers of the bundle v.(Hy) — H. Let j, denote the inclusion of
the fiber over x € H. As € < ¢, by choice of u, the restricted form is

G2 = d((1 +13)d02) + d(r7d6y)
= 2T2d’f‘2 A d02 + 27‘1d7“1 A d91,

as claimed. 0

4.7 Construction of the Kahler Structure

Our setting is now that of a line bundle L given by
II:V x Cug P(D(&),C) — M,

which is the trivial projection to V on V' xC, and which maps [z, (r1,01), (r2,02)] €
P(D(4"),C) to v(z,(r1,01)) € vy (H) C M. V x C carries the symplectic form
Qy, and we endow P(D(4"),C) with €, constructed in Section 4.6. As Q, co-
incides with w,, outside of v.(Hp), the symplectic gluing via ® goes through
without change so that L carries a global symplectic form 2 defined on the two
factors by

Q|V><(C = Qvand Q|P(D(6’),(C) = QV.

Remark 4.7.1. The definition of a symplectic Lefschetz-Bott fibration only
requires the 2-form on the total space to be symplectic on the vertical subbbun-
dle, not globally. The 2-form Q € Q2(L) constructed here is globally symplectic,
however.

We are now ready to construct the final piece of data constituting a Lefschetz-
Bott fibration.

Lemma 4.7.2 ([Oba20, Lemma 3.6]). There ezists an almost complex struc-
ture J on P(D(8"),C) compatible with Q,, such that Hy is an almost complex
submanifold of (v.(Hy),J), and U, is normally Kdhler near Hy.

Proof. We first construct a Riemannian metric on each factor of P x D(¢") x C
which is invariant under the action of S, so that it descends to P(D(¢’),C).

Further recall that « is a contact form on P, so that da is a symplectic form on
ker o« C TP. Choose an almost complex structure .J, which is compatible with
dov, which means da(-, J,-) is a Riemannian metric on ker @. To make this into
a Riemannian metric on all of TP, set

o (u,v) := da(u, Jov) + a(u)a(v).
The forms o and da are S'-invariant by virtue of o being a connection form, so

that also g, is invariant under the action of S! on P. Endow D(#’) and C with
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the standard Riemannian metrics g; and g, which are also S'-invariant, as the
action is just a rotation. Hence,

9:=Gga+ 391+ G2

induces a Riemannian metric on the quotient P(D(J),C). Thus the polar de-
composition of (P(D(d'),C),,) with respect to g (see [Can06, Chapter 12|)
provides a compatible almost complex structure J on P(D(¢),C) (though the
induced metric need not necessarily coincide with g). Restricting to Hy, J is
the almost complex structure arising from the polar decomposition of g, (on
the quotient P(D(6"),C)), and thus Hy is an almost complex submanifold of
(P(D(),C), J).

With respect to J, €2, is normally K&hler near Hy: we can foliate the tubular
neighbourhood vy (Hy) of the critical locus by normal slices D, for [z,0,0]
ranging in Hy, where

D, = {[z,21, 2] € P(D(),C) | |21|* + |22|* < €}.

The almost complex structure J restricted to D, is just the standard complex
structure on C2, and Q,|p, = 2(r1dry Adfy +ra2drs Adfs) is twice the standard
symplectic structure. In particular, J|p, is integrable and compatible with
Q,|p,, which is closed, and hence Kahler. O

With all this in place, it is now straightforward to prove

Theorem 4.7.3 ([Oba20, Section 3.3]). The tuple (L, m,Q, J,jo), where jo is
the standard complex structure on C, is a symplectic Lefschetz-Bott fibration.

Proof. The critical locus of 7 is Hy, which is a smooth submanifold of L with
finitely many connected components. Near Hy, more precisely, on v.(Hp), € is
normally J-Kéahler by Lemma 4.7.2. Three points remain to be shown:

e The form Q is nondegenerate on ker Dr: note that ker D, = TP/S! =
TH, and that ker Dmy, = TV. Restricting Qy to TV is d\, which is the
symplectic form w € Q2?(M), whereas nondegeneracy of ,, restricted to
1TP/S?! follows by a computation.

e The fibration 7 is (J, jo)-holomorphic: on the normal slices D, p(r1) = r1,
and thus 7|p, may be written as

7| p, [z, 21, 22]) = 2z122.

As J is the standard complex structure on the D(¢’)- and C-factors, 7|p,
is clearly (J, jo)-holomorphic, and we see that J preserves T'D, and its
orthogonal complement with respect to g, which consists of the tangent
vectors in T'P. Since TP C ker(Dr), we have for any u+v € TD, ® TD;
that

Drlu + v] = Dr[u].
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Thus the fact that J preserves both TD, and TD; yields immediately
that

D7y 2y 20)[J(u + )] = Drpy 2y ooy [Ju] = jo DT 2y 20 [ (w4 v)],

so that 7 is holomorphic on all of v (H).

e The complex normal Hessian is everywhere nondegenerate: the local ex-
pression for m on the normal slices D, yields immediately that at any
[x, 21, 23] € D,,, the holomorphic normal Hessian is

0 1

1 0/
This is nondegenerate and holds in particular for all [z,0,0] € Hy, which
concludes the proof.

O

Remark 4.7.4. Note that Hs,(L;Z) = Hs,(M;Z) = Z since M is a closed
orientable 2n-dimensional manifold. This implies by cellular homology that any
handle decomposition of L contains a handle of index > 2n > dim(L)/2 = n+1,
so that by Remark 1.4.20, L cannot carry a Stein structure, and thus by [GP17],
L does not admit a Lefschetz fibration.

Remark 4.7.5. From this construction, it follows that the regular fibers 7= (2)
for z # 0 can be identified with M \ H. However, this identification is never
symplectic, since the fibers of 7 have infinite volume with respect to 2 (see
[Oba20, Remark 3.7]), whereas (M \ H,w|p\ ) has finite volume due to M
being a closed symplectic manifold.
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Chapter 5

Distinct Strong Symplectic
Fillings of the Link of the
A;-Type Singularity

In this chapter, we utilize the machinery of Lefschetz-Bott fibrations through
the existence Theorem 4.0.1, together with the strong symplectic filling they
induce by Proposition 3.3.1 when restricted to the disk, to exhibit mutually
non-homotopic strong symplectic fillings of the link of the Ag-type singularity.
The precise statement is the following:

Theorem 5.0.1 ([Oba20, Theorem 1.2]). Let Xj be the link of the Aj-type
singularity endowed with the canonical contact structure & .,y inherited from the
standard contact structure on the unit sphere S?"*3. Then if dim(X;) > 5,
there are at least [k/2] + 1 distinct strong symplectic fillings up to homotopy.

5.1 Main Ingredients
Let us start by explaining some terminology and collecting the main tools in-
volved in the construction.

Definition 5.1.1. For an integer k > 1, consider the complex polynomial fj €
Clz0,- - -, 2n+1] given by
f(zoy y2ny1) = ngr...JrszJrszi%,

and denote its vanishing locus by Vi := {z € C"*? | f(z) = 0}. This variety has
a unique singularity at the origin, which is called the Aj-type singularity.

Considering the unit sphere $?"3 c C"*2, set

Y=V N S2n+3,
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which is known as the link of the singularity. We endow X, with the contact
structure &.,, inherited from the standard contact structure on the sphere, as
defined in Example 1.1.13.

The symplectic fillings of the link of the Ag-type singularity will be obtained
by exhibiting different Lefschetz-Bott fibrations from V;, N D27 to the disk
D by prescribing their collection of vanishing cycles. The total spaces of these
fibrations provide the desired fillings. We may describe these total spaces topo-
logically as arising from a certain gluing construction involving the vanishing
cycles:

Construction 5.1.2. Suppose m; : F; — D for ¢ = 1,2 are two topological
Lefschetz-Bott fibrations over the disk whose regular fibers are diffeomorphic to
F. Fix base points z; € D and denote their fibers by F; = m; *(z;). Now take
tubular neighbourhoods v(F;) of the fibers in their respective vertical bundle
0y F;. The normal bundle of F; in 0, F; is trivial, and hence

v(F;) = [—e,e] x F
for some small € > 0. As both fibers F; are diffeomorphic to F', we may choose
a fiber-preserving diffeomorphism

fiv(Fy) = v(Fy)
to glue the total spaces E; along v(F;), yielding a new manifold

El#fEQ = (E1 U EQ)/(ZL' ~ f(l')), Vo € Z/(Fl).

This is called the fiber sum of Fy and FE,, and the total space admits a topo-
logical Lefschetz-Bott fibration

m: By Ey — DD = D,

where f denotes gluing along m;(v(F};)), and where 7 is defined by 7|g, = ;.

To distinguish the total spaces of the fibrations of interest, we will use the
following:

Lemma 5.1.3 ([Oba20, Lemma 4.1]). Let m; : E; — D be topological Lefschetz-
Bott fibrations over the disk, for i = 1,2, both with reqular fibers isomorphic to
F. Let F; be a regular fiber of w;, and let f : Fy — Fy be a diffeomorphism.
Then

X(Er#rE2) = x(E1) + x(E2) — x(F).

Proof. Let p; : E; — E1#7E> the inclusion E; — E; U E, followed by the
quotient projection to E1#¢FEs. Then we have Ey#¢FEs = pi(E1) U pa(Es),
where p1(E1) Np2(Es) = v(F). The claim then immediately follows from the
fact that x(AU B) = x(A) + x(B) — x(A N B) for any two subspaces A, B of a
topological space so that the interiors of A and B still cover the union AUB. [
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Moreover, to describe the fibrations constructed in the proof, it will be helpful
to consider a Lefschetz-Bott fibration over the disk obtained by appropriately
restricting the fibration on a complex line bundle over M constructed in Theo-
rem 4.0.1. We refer the reader to appendix A in [Oba20] for details.

Proposition 5.1.4 ([Oba20, Proposition A.2]). Let (L, m,$, J, jo) be the Lefschetz-
Bott fibration constructed in Theorem J.0.1. Then there exist

e a compact submanifold with corners E. C L which contains Hy such that
7. :=|g, takes values in D* C C, and

e a symplectic form Q. € Q*(E.) which agrees with Q on the fibers of w

such that (Eq,me, Qe, J, jo) is a Lefschetz-Bott fibration over the closed unit disk
D whose fibers are canonically identified with V.= M \ ©Uy(H), and whose
critical point set is canonically identified with H. Its monodromy along 0D is
symplectically isotopic to a fibered Dehn twist along the boundary of a reqular
fiber.

5.2 Construction of the Strong Symplectic Fill-
ings
With these preliminaries in hand, we are ready to prove Theorem 5.0.1.

Outline

Step 1:. We begin in Section 5.3 by considering the compactified cotangent
bundle DT*S™ — S™, which will act as the fiber of the symplectic Lefschetz-Bott
fibration inducing the desired filling. The first step is to identify D7T*S™ with a
suitable subset of CP™*!, endowed with the Fubini-Study from Examples 1.1.5,
to which we can apply Theorem 4.0.1. All symplectic structures that follow will
by induced by the Fubini-Study form.

Step 2:. Connecting this to the link ¥, we prove in Section 5.4 that
the contact manifold (X, {can) is contactomorphic to an open book with pages
DT*S™ and suitable monodromy, which arises through the open book decompo-
sition induced on the boundary of a Lefschetz fibration V;, N D274 — D.

Step 3:. To construct various symplectic fillings of the link, we define dif-
ferent symplectic Lefschetz-Bott fibrations by specifying their fiber D7*S™ and
vanishing cycles in Section 5.5. The vanishing cycles we consider are 9DT™*S™
and the zero section Sy, and we will vary the number of times each manifold
occurs as a vanishing cycle to obtain different Lefschetz-Bott fibrations. The
fashion in which this is performed gives rise to the same monodromy map for all
fibrations - the monodromy of the contact open book identified with Y.
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This implies that the open book induced on the boundary of their total spaces
is the same as that which was previously identified with ¥, so that their total
space provides a strong symplectic filling of 3.

Step 4:. The final step is to distinguish these fillings, which is done by
comparing their Euler characteristic in Section 5.6. Let E; and Fy be symplec-
tic Lefschetz-Bott fibrations with vanishing cycle ODT*S™ or Sy, respectively.
Note that topologically, the Lefschetz-Bott fibrations constructed above are iso-
morphic to fiber sums of F; and E5. This is where the identification of DT™*S™
with a subset of CP"*! from Step 1 becomes crucial, as Theorem 4.0.1 will allow
us to identify E; with a better known Lefschetz-Bott fibration on CP™*! whose
Euler characteristic is known. By previous work, we also know the Euler char-
acteristic of Fy. Hence, we may conclude the proof by the repeated application
of Lemma 5.1.3.

5.3 Description of the fiber
We describe DT*S™ in terms of quadrics in CP™ 1. More precisely, set

Q" :={lz0:...: zn41] € cpntt | zg—i—. . '+23L+1 = 0}, Q"= Q"N {zn+1 = 0}.

Lemma 5.3.1. Q" \ Q"' is diffeomorphic to T*S™.
Proof. Letting z,4+1 = 1, we may identify
Q"\ Q"' = {(wo,...,wn) €C"T Wi+ .. Fwi+1=0}
In real coordinates (wp,...,w,) = w = u+ iv, we can write this as
{(u,v) € R xR | Jlu® = |[v|* = =1, (u,v) = 0}. (5.1)
Note that ||v|]| > 1. From this set, define a diffeomorphism to 7*S™ by
d:.Q"\ Q" — TS
v

wW=u+1iv— <,u||v||> ,
(vl

where we identify
T°S" = {(x,y) € R x R™ | x| = 1, (x,y) = 0}.

The image ®(w) is indeed an element of 7*S™ since evidently the first compo-
nent of ®(w) has unit norm and (u,v) = 0 by the description given in Equa-
tion (5.1). O
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Let v~ (Q™ 1) be an open tubular neighbourhood of Q™! inside Q™ and con-
sider

Q= Q" \vgn(Q"71),
which can be identified with DT*S™. Equip the fiber with (®~1)*(wrs), where

wrs denotes the restriction of the Fubini-Study form. Recall that it may be
written as

n
wrs = —ddlog | Y |z[* +1
j=0

on the images of the standard charts. For later use, set

A=—dlog | Y |z[*+1
j=0

and denote by Sy the zero section of DT*S", which corresponds to {u = 0} in
Q.
Also note that CP" embedded in CP"*! as

CP"={[20:...:2,:0]} cCP"

is a symplectic hypersurface since restricting wpg gives the Fubini-Study form
on CP™, and we have that PD[wpg/27] = [CP™]. It is hence a Donaldson
hypersurface in (CP"*! wrg). Returning to the projective hypersurfaces Q"
and Q™ !, the restriction of wrg to Q™ is symplectic. Since we may regard

QU ' ={l20:...:2,:0] €Q"},

we similarly obtain that Q™! is a Donaldson hypersurface in (Q",wrs), and
thus we may apply Theorem 4.0.1 for M = Q™ and H = Q™! to obtain a line
bundle over Q" that admits a symplectic Lefschetz-Bott fibration.

5.4 Open Book Description of ¥,

We considered in Example 2.1.3 a Lefschetz fibration Vj(e) ND?"+* — C given
by the projection to z,11. Recall that Vi(e) is the e-level set of the polynomial

fe=224+.. . +22+ szﬂ We saw that this Lefschetz fibration has regular fiber

DT*S™ and monodromy Tg(j“l, a product of k+1 right-handed Dehn twists along

the zero section.

In the case at hand, we consider Vj, the vanishing locus of the polynomial f,
as the total space, and not its e-level set Vi(€¢). One can, however, slightly
perturb the polynomial defining Vj in such a way that the projection becomes a
Lefschetz fibration with just the same regular fiber and monodromy, and thereby
obtain an open book decomposition of the original V. This procedure is called
Morsification, and is described in [KK16, Section 4].
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In fact, one can make 7 into a symplectic Lefschetz fibration by equipping the
total space with the 2-form given by

d\ = —dd®log | > |z +1 e Q3 (C"Y).

j=0 Vi nD2n+4

Note that this is the Fubini-Study form pulled back by a coordinate chart to

C"*1, so it is in particular a symplectic form on the entire total space of this
Lefschetz fibration.

Hence, the Lefschetz fibration 7 induces a contact open book decomposition on
the boundary 9(V; ND?"+4) = 3 as

OB(DT*S™, A;7&H).
Thus (X, ker(A|rys,,)) is contactomorphic to the above open book.

The contact structure &.., we endow X with, however, is that induced by
restricting the contact structure on S$2"*3, which may a priori be different
from ker \. However, a computation shows that pulling back A to S?"*3 (by
the Hopf map p : S?"+3 — CP"*!) is just the standard Liouville form, so
that in fact, (Xg, ker(A|rs,)) is contactomorphic to (2, &can), and hence also to
OB(DT*S™, A;7&H).

5.5 Exhibiting the Fillings

We specify symplectic Lefschetz-Bott fibrations over D? by prescribing their
fiber and their vanishing cycles. Denote them by 7, : X, — D?. Let the fiber
be (DT*S™, \) for all fibrations, and define the collection of vanishing cycles of
7y to be
(ODT*S",...,0DT*S", Sy, ..., S0),
—_———

)4 k+1-2¢

where ¢ ranges in 0,1, ..., [k/2]. The monodromy contribution of each 9DT™*S™
is a fibered Dehn twist 75 along 0DT*S™ according to Theorem 2.3.9. Note
that DT*S™ = V5(1) via ®, and so for the standard symplectic structure on
DT*S™, the relation by Acu and Avdek stated as Theorem 2.3.8 gives that 15
is symplectically isotopic to Téo. In fact, this relation also holds for our choice
of symplectic structure; see [Oba20, Proposition 3.11]. The contribution to
the monodromy by vanishing cycles Sy is 7g,, a right-handed Dehn twist along
So.

Hence the total monodromy is

20+k4+1-2¢ _ _k+1
TSO = TSO .
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Therefore, each Lefschetz-Bott fibration defined this way induces an open book
0X, = OB(DT*S™, A 76,

so that since the above open book is contactomorphic to (X, &can), €ach Xy is
a strong symplectic filling of (X, &can)-

5.6 Distinguishing the Fillings

We will do this by computing the Euler characteristic of X,. We start by consid-
ering symplectic Lefschetz-Bott fibrations m; : F; — D, for i = 1, 2, whose fibers
are (DT*S™,d)\), where the monodromy of 7 is 75 (the only vanishing cycle of
71 is ODT*S™), and that of 7y is 7g, (its only vanishing cycle is Sp).

Consider the space Q™. We can apply Theorem 4.0.1 for M = Q™ and H = Q™!
to obtain a Lefschetz-Bott fibration on a line bundle over Q™. Appropriately
restricting this fibration, Proposition 5.1.4 yields a Lefschetz-Bott fibration over
the disk whose fibers are Q™ \ v~ (Q"~!) = DT*S™ and whose monodromy is a
fibered Dehn twist along the boundary of the fiber. Hence, this Lefschetz-Bott
fibration is topologically equivalent to 7. For fiber bundles with compact base
M, fiber F, and total space F, we have x(E) = x(F)x(M), so that

(=Hr—-1

X(E1) = x(Q") = 2_ +n+2,

where the last equality is due to [Dim92, Exercise 5.3.7 (i)].

As for Ey, it can be shown that Es is diffeomorphic to a disk D?"+2 [Oba20, p.
23], so that x(E2) = 1.

The total space X, may now be regarded as the fiber sum of ¢ copies of F; and
k + 1 — 2/ copies of Fs, so that by Lemma 5.1.3, we obtain

X(Xe) = Ox(Er) + (k+1=20x(E2) — (k = O)x(DT"S")

1) —1
:£<H+n+2> +k+1-20—(k—10) x(S")
2 —
=1+(=-1)"™

=/ <(_1);_1 +n+1+ (—1)“) — k(=1)" 4+ 1.

From affine linearity in ¢ of this expression, we see that the X, are pairwise
non-homotopic.
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Chapter 6

Outlook

Recall Oba’s Proposition 3.3.1 and the associated procedure to obtain a strong
symplectic filling of a contact manifold (M, ¢):

1. Find a contact open book description (M, &) = OB(F, \;);

2. Find Dehn or fibered Dehn twists 7¢, € Symp(F,d\) whose composition
is a factorization of the monodromy 1.

While conceptually simple, the higher-dimensional symplectic mapping class
groups are more complicated and not as well-understood, so that factoring the
monodromy into fibered Dehn twists is highly nontrivial. Such a factorization
may not even exist, of course, seeing that the existence of a Dehn twist in
the symplectic mapping class group of (F,d\) presupposes the existence of a
Lagrangian sphere in F'.

Oba’s work, in particular Theorem 4.0.1, provides a potential simplification if
one is able to identify the page F' with the complement of (a neighbourhood
of) a symplectic divisor. In this case, one obtains a symplectic Lefschetz-Bott
fibration with regular fiber F' whose closed 2-form is globally symplectic (Re-
mark 4.7.1), and appropriately restricting it yields a fibration with monodromy
as the fibered Dehn twist along OF satisfying the conditions of 3.3.1 to provide
a symplectic filling.

One could expect a similar technique as that used for the link X; of the Ay-type
singularity, where the page was identified with F' = DT*S™ = Q" \ v(Q" 1),
to be applicable to other polarized manifolds. Some examples and ways to
construct polarized manifolds can be found in [BCO1, Section 2.2], the simplest
of which is M = Q™ and H = Q" !. The next simplest example is given
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by

(M,w) = (CP"xCP™,wps®wrs), H = {(z,w) € CP" xCP™ | Zzzwl = 0} .
=0

(6.1)

Of course, one would still need to find a suitable description of M \ H along
with the knowledge of appropriate mapping class group relations.

Possible references to consult for descriptions of complements of symplectic divi-
sors are [Bir01], [DL19], and [Gir18]. Notably, the polarized symplectic manifold
from Equation (6.1) together with the generalized Lantern relations have been
studied by Torricelli [Tor20] to obtain strong symplectic fillings that are not
Stein fillings of the contact manifolds ST*CP? and ST*RP3.

A Concrete Case

Let us give an outline so as to make the construction from Theorem 4.0.1 more
explicit in the simplest case, that is, for

M:Q":{[zoz...:zn+1]€CPn+1\Zg—l—...—l—zfurl:()},

equipped with the restriction of the Fubini-Study form wgg, and the hypersur-
face inside Q™ given by

H=Q" '=Q"n{z1 =0}

Theorem 4.0.1 guarantees the existence of a line bundle L with ¢; (L) = —[wrs/27]
and a Lefschetz-Bott fibration 7 : L — C.

Recall that the bundle L is defined as
L=V xCUg (P xD()) x, C,

where
e P — H is the Boothby-Wang bundle;
e V is the complement of a tubular neighbourhood v(Q™1);

e & is the gluing map given by

(I)([l‘, (Tla 01)7 (T27 92)]) = (V([l‘, (Tla 01)])7 (7’2,91 + 02));

e the S'-actions p and p on C are defined by

p(O)(2) = ™), p(O)(2) = e 2™ (2).
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The Boothby-Wang Bundle P

The Boothby-Wang bundle (P, a) — (Q" ', wrs|rgn-1) turns out to admit a
simple description as the restriction of the Boothby-Wang bundle over CP"*1,
which we determine first. Recall the defining property of the Fubini-Study form.
Consider the Hopf map p and the inclusion ¢ in the diagram below:

S L (C™F2,wy)
Jp
(CP™ ! wrg)
Then the Fubini-Study form satisfies
P wrs = i"wo,

suggesting that a primitive of the standard symplectic form wg could serve as
the connection-contact form of the Boothby-Wang bundle.

Take A\ to be twice the primitive of wy inducing the standard contact structure

on S?"*3 which in linear coordinates zg,¥o,...,Tni1,Yns1 on C*"2 can be
written as
n+2
Ao = E xidy; — yidw;.
i=0

Recall that the Reeb vector field Ry, is given by

n+1 n+1
0

0 0
Ryy=) wim——yimz— =2 ;
Ao ; y; 0x; ; i

which corresponds to the infinitesimal generator &; of the S'-action on the total
space of the Boothby-Wang bundle. The action is hence given by the Reeb flow
¢¢, which we compute to be

¢t (Z) _ 627ritZ,

where we consider S* = R/27Z. We conclude that S! acts on $2"+3 by multipli-
cation in each component, and that the orbits are precisely the fibers of the Hopf
map. Hence the S'-action given by multiplying each entry with 27 § ¢ ST,
makes p : (S?"F3 \g) — (CP™*! wrs) into a principal S* bundle. The contact
form ) is easily checked to be S'-invariant, and it satisfies d\g = wy = p*wrs.
Hence the Boothby-Wang bundle over CP"*! is given by p.

Therefore, pulling this bundle back to Q"' gives the Boothby-Wang bundle we
are interested in. Explicitly, it is given by

p:P={(20,...,20,0) € S¥3 | 5+ .. .22 =0} — Q" "
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Completing the Construction

In principle, it is possible with this description of the Boothby-Wang bundle to
carry out the construction of L step by step to obtain an explicit bundle. For
example, the neighbourhood of H, denoted by vgn»(H), is symplectomorphic to
P x;D(8). Given that S* acts on P C S?"*3 by multiplication, which is just
the action defining CP™*!, one can obtain that

von(H) = Q"' x D(6)/(lz],w) ~ ([2], > "w), 0 €S

One can continue along these lines to obtain expressions for the other spaces
involved, namely

e the bundle over vo»(H), given by (P x D(4)) x, C;
e the bundle over V, given as the trivial bundle V' x C;
e the glued space L =V x CUg (P x D(4)) %, C;

e the Lefschetz-Bott fibration 7 : L — C, defined on V x C by the pro-
jection to the C-factor, and on the bundle over vg» (H) by multiplication
in the D(§)- and C-factors, interpolating with a smooth function p as in
Section 4.5 so as to make it smooth.

However, writing out the definitions of these spaces does not immediately lead
to a deeper understanding of the constructed Lefschetz-Bott fibration. The
complement V still warrants a more rigorous description, as well as the spaces
involved after all identifications have been made.

In the end, a dream result would be a tractable identification of the bundle L
with the tautological line bundle O(—1), to which it is isomorphic due to them
having the same first Chern class.
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